Cảm Biến Vị Giác Tiên Tiến Dựa Trên Lipid Nhân Tạo Với Tính Chọn Lọc Toàn Cầu Đối Với Những Chất Vị Cơ Bản Và Tương Quan Cao Với Điểm Vị Giác
Tóm tắt
Từ khóa
#cảm biến vị giác #lipid nhân tạo #lựa chọn toàn cầu #vị cơ bản #tương quan với điểm vị giác #thực phẩm #đồ uống #dược phẩmTài liệu tham khảo
Legin, 1997, Tasting of beverages using an electronic tongue, Sens. Actuat. B, 44, 291, 10.1016/S0925-4005(97)00167-6
Vlasov, 1998, Non-selective chemical sensors in analytical chemistry: from “electronic nose” to “electronic tongue”, Fresenius J. Anal. Chem, 361, 255, 10.1007/s002160050875
Legin, 1999, Application of electronic tongue for qualitative and quantitative analysis of mineral water and wine, Electroanal, 11, 814, 10.1002/(SICI)1521-4109(199907)11:10/11<814::AID-ELAN814>3.0.CO;2-7
Paolesse, 2000, Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine, Sens. Actuat. B, 69, 342, 10.1016/S0925-4005(00)00483-4
Vlasov, 2005, Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report), Pure Appl. Chem, 77, 1965, 10.1351/pac200577111965
Winquist, 1997, An electronic tongue based on voltammetry, Anal. Chim. Acta, 357, 21, 10.1016/S0003-2670(97)00498-4
Winquist, 2000, A hybrid electronic tongue, Anal. Chim. Acta, 406, 147, 10.1016/S0003-2670(99)00767-9
Toko, 1980, Influence of monovalent and divalent cations on the surface area of phosphatidylglycerol monolayers, Chem. Phys. Lipids, 26, 79, 10.1016/0009-3084(80)90013-4
Toko, 1981, Dynamic aspect of a phase transition in DOPH-millipore membranes, J. Phys. Soc. Jpn, 50, 1343, 10.1143/JPSJ.50.1343
Toko, 1981, Stabilization effect of protons and divalent cations on membrane structures of lipids, Biophys. Chem, 14, 11, 10.1016/0301-4622(81)87002-0
Toko, 1982, Self-sustained oscillations of membrane potential in DOPH-millipore membranes, J. Phys. Soc. Jpn, 51, 3398, 10.1143/JPSJ.51.3398
Toko, 1984, Current-voltage characteristics and self-sustained oscillations in dioleyl phosphate-millipore membranes, Biophys. Chem, 20, 39, 10.1016/0301-4622(84)80004-6
Toko, 1985, Dynamic property of membrane formation in a protoplasmic droplet of nitella, Biophys. Chem, 21, 295, 10.1016/0301-4622(85)80017-X
Toko, 1985, On the oscillatory phenomenon in an oil/water interface, Biophys. Chem, 22, 151, 10.1016/0301-4622(85)80037-5
Toko, 1986, Self-sustained oscillations of electric potential in a model membrane, Biophys. Chem, 23, 201, 10.1016/0301-4622(86)85004-9
Toko, 1986, Self-oscillation of electric potential of a porous membrane impregnated with polymer multi-bilayer complexes, Chem. Lett, 15, 1375, 10.1246/cl.1986.1375
Iiyama, 1986, Effect of bitter substances on a model membrane system of taste reception, Agric. Biol. Chem, 50, 2709
Iiyama, 1987, Electric oscillation in an excitable model membrane impregnated with lipid analogues, Biophys. Chem, 28, 129, 10.1016/0301-4622(87)80082-0
Hayashi, 1989, Effect of taste substances on electric characteristics of a lipid cast membrane with a single pore, Sens. Actuat, 16, 25, 10.1016/0250-6874(89)80003-4
Toko, 1989, Self-organized electric structure in uni- and multicellular biological systems, Synergetics, 43, 326
Iiyama, 1989, Effect of several sweet substances on the electric characteristics of a dioleyl phosphate-millipore membrane, Agric. Biol. Chem, 53, 675
Hayashi, 1989, Effect of taste substances on aperiodic oscillation of an electric potential in a synthetic lipid membrane, Jpn. J. Appl. Phys, 28, 1507, 10.1143/JJAP.28.1507
Hayashi, 1990, Multichannel taste sensor using lipid membranes, Sens. Actuat. B, 2, 205, 10.1016/0925-4005(90)85006-K
Toko, K., Yamanaka, T., Hayashi, K., and Yamafuji, K. Multi-channel taste sensor with lipid membranes. Tokyo, Japan.
Ikezaki, 1991, Multichannel taste sensor with artificial lipid membrane, Trans. JEICE Jpn, J74-C-II, 434
Ikezaki, H., Toko, K., Hayashi, K., Toukubo, R., Yamanaka, T., Sato, K., and Yamafuji, K. (, January May). Intelligent multi-channel taste sensor with lipid membranes. Tokyo, Japan.
Ikezaki, H., Toko, K., Hayashi, K., Toukubo, R., Sato, K., and Yamafuji, K. (1992, January June). Taste sensing system with lipid membranes. Tokyo, Japan.
Murata, 1992, Quantification of sourness and saltiness using a multichannel sensor with lipid membranes, Sens. Mater, 4, 81
Toko, 1994, Multichannel taste sensor using electrical potential changes in lipid membranes, Biosens. Bioelectron, 9, 359, 10.1016/0956-5663(94)80036-7
Hayashi, 1995, Electric characteristics of lipid-modified monolayer membranes for taste sensor, Sens. Actuat. B, 23, 55, 10.1016/0925-4005(94)01522-J
Bartoshuk, 1975, Taste mixtures: is mixture suppression related to compression?, Physiol. Behav, 14, 643, 10.1016/0031-9384(75)90193-6
Kawamura, Y., and Kare, M.R. (1987). Umami: A Basic Taste, Marcel Dekker.
Kawamura, 1969, A neurophysiological study on astringent taste, Jpn. J. Physiol, 19, 851, 10.2170/jjphysiol.19.851
Schiffman, 1992, Chorda tympani and lingual nerve responses to astringent compounds in rodents, Physiol. Behav, 51, 55, 10.1016/0031-9384(92)90203-E
Bajec, 2008, Astringency: mechanisms and perception, Crit. Rev. Food Sci. Nutr, 48, 858, 10.1080/10408390701724223
Singer, 1972, The fluid mosaic model of the structure of cell membranes, Science, 175, 720, 10.1126/science.175.4023.720
Chandrashekar, 2006, The receptors and cells for mammalian taste, Nature, 444, 288, 10.1038/nature05401
Reed, 1999, Localization of a gene for bitter-taste perception to human chromosome 5p15, Am. J. Hum.Genet, 64, 1478, 10.1086/302367
Chandrashekar, 2000, T2Rs function as bitter taste receptors, Cell, 100, 703, 10.1016/S0092-8674(00)80706-0
Ishimaru, 2006, Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor, Proc. Natl. Acad. Sci. USA, 103, 12569, 10.1073/pnas.0602702103
Ishii, 2009, Acetic acid activates PKD1L3–PKD2L1 channel—A candidate sour taste receptor, Biochem. Biophys. Res. Commun, 385, 346, 10.1016/j.bbrc.2009.05.069
Kellenberger, 2002, Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure, Physiol. Rev, 82, 735, 10.1152/physrev.00007.2002
Lyall, 2004, The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant, J. Physiol, 558, 147, 10.1113/jphysiol.2004.065656
Nakashima, 1998, Increase in inositol 1,4,5-trisphosphate levels of the fungiform papilla in response to saccharin and bitter substances in mice, Cell Physiol. Biochem, 8, 224, 10.1159/000016285
Nakashima, 1999, Transduction for sweet taste of saccharin may involve both inositol 1,4,5-trisphosphate and cAMP pathways in the fungiform taste buds in C57BL mice, Cell Physiol. Biochem, 9, 90, 10.1159/000016305
DeSimone, 2001, Acid detection by taste receptor cells, Resp. Physiol, 129, 231, 10.1016/S0034-5687(01)00293-6
Yan, 2001, Bitter taste transduced by PLC-β2-dependent rise in IP3 and α-gustducin-dependent fall in cyclic nucleotides, Am. J. Physiol. Cell Physiol, 280, C742, 10.1152/ajpcell.2001.280.4.C742
Zhang, 2003, Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways, Cell, 112, 293, 10.1016/S0092-8674(03)00071-0
Kamo, 1974, Physicochemical studies of taste reception. I. Model membrane simulating taste receptor potential in response to stimuli of salts, acids and distilled water, Biochim. Biophys. Acta, 367, 1, 10.1016/0005-2736(74)90129-1
Kamo, 1974, Physicochemical studies of taste reception. II. Possible mechanism of generation of taste receptor potential induced by salt stimuli, Biochim. Biophys. Acta, 367, 11, 10.1016/0005-2736(74)90130-8
Ikezaki, 1997, Quantification of taste of green tea with taste sensor, Trans. IEE of Japan, 117-E, 465
Ikezaki, H., Kobayashi, Y., Toukubo, R., Naito, Y., Taniguchi, A., and Toko, K. (1999, January June). Techniques to control sensitivity and selectivity of multichannel taste sensor using lipid membranes. Sendai, Japan.
Ikezaki, 2000, Improvement of selectivity of taste sensor by control of charge density and hydrophobicity of lipid membrane, Technical Report of IEICE. OME, 100, 19
Kobayashi, 2009, Development of an artificial lipid-based membrane sensor with high selectivity and sensitivity to the bitterness of drugs and with high correlation with sensory score, IEEJ Trans, 4, 710
Gouy, 1910, Sur la constitution de la charge électrique à la surface d'un électrolyte, J. Phys. Theor. Appl, 9, 457, 10.1051/jphystap:019100090045700
Chapman, 1913, A contribution to the theory of electrocapillarity, Phil. Mag, 25, 475, 10.1080/14786440408634187
Payens, 1955, Ionized monolayers, Philips Res. Rep, 10, 425
Teubner, 1976, Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure, Biophys. Chem, 4, 319, 10.1016/0301-4622(76)80013-0
Oohira, 1995, Electric characteristics of hybrid polymer membranes composed of two lipid species, J. Phys. Soc. Jpn, 64, 3554, 10.1143/JPSJ.64.3554
Oohira, 1996, Theory of electric characteristics of the lipid/PVC/DOPP membrane and PVC/DOPP membrane in response to taste stimuli, Biophys. Chem, 61, 29, 10.1016/0301-4622(96)00026-9
Hayashi, 1999, Adsorption of taste substances on lipid membranes of taste sensor, Trans. IEE of Japan, 119, 374
Iiyama, 2003, Peculiar change in membrane potential of taste sensor caused by umami substances, Sens. Actuat. B, 91, 191, 10.1016/S0925-4005(03)00087-X
Kumazawa, 1985, Neuroblastoma cell as a model for a taste cell: mechanism of depolarization in response to various bitter substances, Brain Res, 333, 27, 10.1016/0006-8993(85)90120-9
Danielsson, 1996, Methods for determining n-octanol-water partition constants, Trends Anal. Chem, 15, 188, 10.1016/0165-9936(96)00003-9
Donovan, 2002, Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly (vinyl alcohol) high-performance liquid chromatography columns, J. Chromatogr. A, 952, 47, 10.1016/S0021-9673(02)00064-X
Gulyaeva, 2003, pH dependence of the relative hydrophobicity and lipophilicity of amino acids and peptides measured by aqueous two-phase and octanol-buffer partitioning, J. Pept. Res, 61, 71, 10.1034/j.1399-3011.2003.00037.x
Gastl, 2007, Analytical investigations to evaluate bitter sensation using a taste sensing system, Brew. Sci, 60, 48
Gastl, 2008, “Drinkability”—balance and harmony of components as well as an incentive for continuing to drink, Brauwelt International, 26, 148
Okamoto, 2009, Bitterness evaluation of orally disintegrating famotidine tablets using a taste sensor, Asian J. Pharm. Sci, 4, 1
Habara, M., Chui, H., Ikezaki, H., and Toko, K. (, January May). Detecting sweetness with lipid/polymer membranes. St. Petersburg, Russia.
Habara, 2007, Detecting of sugars using lipid/polymer membranes, Sens. Mater, 19, 325
Cui, H., Habara, M., Ikezaki, H., and Toko, K. (3,, January November). Study of surface-modified lipid/polymer membranes for detecting sweet taste substances. Tainan, Taiwan.
Hayashi, T. (1967). Olfaction and Taste II, Pergamon Press.
Ichikawa, K., Indow, T., Sato, S., Nonaka, T., Noro, K., Haga, T., Yoshikawa, S., and Yoshida, M. (1973). Sensory Evaluation Handbook, JUSE Press. (in Japanese).
Field, 1959, The sense of taste, Handbook of Physiology, Neurophysiology, 1, 507
Beilder, 1971, Part 2; Taste, Handbook of Sensory Physiology IV: Chemical Senses, 4, 200
Baldacci, 1998, Discrimination of wine using taste and smell sensors, Sens. Mater, 10, 185
Chen, R., Ikezaki, H., Hayashi, N., Kohata, K., Kugimiya, Y., Kobayashi, K., Taniguchi, A., and Toko, K. (2004, January November). Study on evaluating jimi-taste of green tea using multichannel taste sensor. Shizuoka, Japan.
Hayashi, 2006, Techniques for universal evaluation of astringency of green tea infusion by the use of a taste sensor system, Biosci. Biotechnol. Biochem, 70, 626, 10.1271/bbb.70.626
Hayashi, 2008, Evaluation of the umami taste intensity of green tea by a taste sensor, J. Agric. Food Chem, 56, 7384, 10.1021/jf800933x
Arikawa, 1995, Analysis of sake taste using multielectrode taste sensor, Sens. Mater, 7, 261
Arikawa, 1996, Analysis of sake mash using multichannel taste sensor, J. Ferment. Bioeng, 82, 371, 10.1016/0922-338X(96)89153-7
Komai, H., Naito, Y., Sato, K., Ikezaki, H., Taniguchi, A., and Toko, K. (1995, January April). Measurement of coffee taste using lipid membrane taste sensors. Kyoto, Japan.
Fukunaga, 1996, Quantification of taste of coffee using sensor with global selectivity, Sens. Mater, 8, 47
Imamura, 1996, Monitoring of fermentation process of miso (soybean paste) using multichannel taste sensor, Sens. Actuat. B, 37, 179, 10.1016/S0925-4005(97)80136-0
Yamada, 1997, Highly sensitive discrimination of taste of milk with homogenization treatment using taste sensor, Mater. Sci. Eng, C5, 41, 10.1016/S0928-4931(97)00021-0
Mizota, 2009, Flavor evaluation using taste sensor for UHT processed milk stored in cartons having different light permeabilities, Milchwissenschaft, 64, 143
Iiyama, 2000, Measurements of soy sauce using taste sensor, Sens. Actuat. B, 66, 205, 10.1016/S0925-4005(00)00345-2
Thi, 2004, Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system, Food Chem, 88, 557, 10.1016/j.foodchem.2004.02.007
Sasaki, 2005, Analysis of pork extracts by taste sensing system and the relationship between umami substances and sensor output, Sens. Mater, 17, 349
Chen, R., Kobayashi, Y., Ikezaki, H., Taniguchi, A., and Toko, K. (, January July). Study of agricultural products using multichannel taste sensor with lipid/polymer membranes. Sapporo, Japan.
Ueda, 1997, Flavor characteristics of glutathione in raw and cooked foodstuffs, Biosci. Biotech. Biochem, 61, 1977, 10.1271/bbb.61.1977
Toko, K., and Uchida, T. (2007). Taste Modification Technology of Food and Medicine, CMC publishing. (in Japanese).
Ikezaki, H. (2009). Monthly Food Plant Manager, Japan Food Journal. (in Japanese).
Japan Oil Chemist’s Society (2001). The Handbook of Oil Chemistry-Lipids and Surfactants, [4th ed]. (in Japanese).
Uchida, 2000, Quantitative evaluation of the bitterness of commercial medicines using a taste sensor, Chem. Pharm. Bull, 48, 1843, 10.1248/cpb.48.1843
Uchida, 2001, A new method for evaluating the bitterness of medicines by semi-continuous measurement of adsorption using a taste sensor, Chem. Pharm. Bull, 49, 1336, 10.1248/cpb.49.1336
Miyanaga, 2002, Prediction of the bitterness of single, binary- and multiple-component amino acid solutions using a taste sensor, Int. J. Pharm, 248, 207, 10.1016/S0378-5173(02)00456-8
Tanigake, 2003, The bitterness intensity of clarithromycin evaluated by a taste sensor, Chem. Pharm. Bull, 51, 1241, 10.1248/cpb.51.1241
Uchida, 2003, Evaluation of the bitterness of antibiotics using a taste sensor, J. Pharm. Pharmacol, 55, 1479, 10.1211/0022357022106
Mukai, 2004, Quantitative taste evaluation of total enteral nutrients, Chem. Pharm. Bull, 52, 1416, 10.1248/cpb.52.1416
Ishizaka, 2004, Bitterness evaluation of medicines for pediatric use by a taste sensor, Chem. Pharm. Bull, 52, 943, 10.1248/cpb.52.943
Kataoka, 2004, Evaluation of bottled nutritive drinks using a taste sensor, Int. J. Pharm, 279, 107, 10.1016/j.ijpharm.2004.04.006
Tachiki, 2005, Bitterness evaluation of famotidine orally disintegrating tablets using a taste sensor, Jpn. J. Med. Pharm. Sci, 54, 321
Kataoka, 2008, The taste sensory evaluation of medicinal plants and Chinese medicines, Int. J. Pharm, 351, 36, 10.1016/j.ijpharm.2007.09.017
Takagi, 2000, Detection of suppression of bitterness by sweet substance using a multichannel taste sensor, J. Pharma. Sci, 87, 552, 10.1021/js970429x
Takagi, 2001, Quantification of suppression of bitterness by phospholipids using taste sensor, J. Pharm. Sci, 90, 2042, 10.1002/jps.1155
Nakamura, 2002, The effect of various substances on the suppression of the bitterness of quinine–human gustatory sensation, binding, and taste sensor studies, Chem. Pharm. Bull, 50, 1589, 10.1248/cpb.50.1589
Miyanaga, 2002, Bitterness prediction or bitterness suppression in human medicines using a taste sensor, Sens. Mater, 14, 455
Miyanaga, 2003, Quantitative prediction of the bitterness suppression of elemental diets by various flavors using a taste sensor, Pharm. Res, 20, 1932, 10.1023/B:PHAM.0000008039.59875.4f
Ogawa, 2004, The combination effect of L-arginine and NaCl on bitterness suppression of amino acid solutions, Chem. Pharm. Bull, 52, 172, 10.1248/cpb.52.172
Miyanaga, 2004, Suppression of the bitterness of enteral nutrients using increased particle sizes of branched-chain amino acids (BCAAs) and various flavours: a taste sensor study, Chem. Pharm. Bull, 52, 490, 10.1248/cpb.52.490
Tsuji, 2006, Evaluation of bitterness suppression of macrolide dry syrups by jellies, Chem. Pharm. Bull, 54, 310, 10.1248/cpb.54.310
Tokuyama, 2006, Bitterness suppression of BCAA solutions by L-ornithine, Chem. Pharm. Bull, 54, 1288, 10.1248/cpb.54.1288
Hashimoto, 2007, The quantitative prediction of bitterness-suppressing effect of sweeteners on the bitterness of famotidine by sweetness-responsive sensor, Chem. Pharm. Bull, 55, 739, 10.1248/cpb.55.739
Ishizaka, 2007, The suppression of enhanced bitterness intensity of macrolide dry syrup mixed with an acidic powder, Chem. Pharm. Bull, 55, 1452, 10.1248/cpb.55.1452
Woertz, 2010, Performance qualification of an electronic tongue based on ICH guideline Q2, J. Pharm. Biomat. Anal., 51, 497, 10.1016/j.jpba.2009.09.029
ICH Expert Working Group Validation of analytical procedures: text and methodology Q2(R1). Available online: http://www.ich.org/LOB/media/MEDIA417.pdf (accessed on 15 January 2010).
Uekama, 2004, Design and evaluation of cyclodextrin-based drug formulation, Chem. Pharm. Bull, 52, 900, 10.1248/cpb.52.900
Katsuragi, 1995, Selective inhibition of bitter taste of various drugs by lipoprotein, Pharmaceut. Res, 12, 658, 10.1023/A:1016295122461
Etoh, S., Iwakura, M., Nakashi, K., Hattori, R., Hayashi, R., and Toko, K. (2006, January May). Fabrication of taste sensor chip and portable taste sensor system. Okinawa, Japan.
Etoh, 2008, Taste sensor chip for portable taste sensor system, Sens. Mater, 20, 151