Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion

Electrochemical Energy Reviews - Tập 5 - Trang 1-41 - 2022
Wenxian Li1,2,3, Zehao Guo1, Jack Yang2, Ying Li1,3, Xueliang Sun4, Haiyong He5, Sean Li2, Jiujun Zhang3
1Institute of Materials, Shanghai University Shanghai, China
2UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, Australia
3College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai, China
4Department of Mechanical and Materials Engineering, University of Western Ontario, London, Canada
5Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China

Tóm tắt

Well-defined atomically dispersed metal catalysts (or single-atom catalysts) have been widely studied to fundamentally understand their catalytic mechanisms, improve the catalytic efficiency, increase the abundance of active components, enhance the catalyst utilization, and develop cost-effective catalysts to effectively reduce the usage of noble metals. Such single-atom catalysts have relatively higher selectivity and catalytic activity with maximum atom utilization due to their unique characteristics of high metal dispersion and a low-coordination environment. However, freestanding single atoms are thermodynamically unstable, such that during synthesis and catalytic reactions, they inevitably tend to agglomerate to reduce the system energy associated with their large surface areas. Therefore, developing innovative strategies to stabilize single-atom catalysts, including mass-separated soft landing, one-pot pyrolysis, co-precipitation, impregnation, atomic layer deposition, and organometallic complexation, is critically needed. Many types of supporting materials, including polymers, have been commonly used to stabilize single atoms in these fabrication techniques. Herein, we review the stabilization strategies of single-atom catalyst, including different synthesis methods, specific metals and carriers, specific catalytic reactions, and their advantages and disadvantages. In particular, this review focuses on the application of polymers in the synthesis and stabilization of single-atom catalysts, including their functions as carriers for metal single atoms, synthetic templates, encapsulation agents, and protection agents during the fabrication process. The technical challenges that are currently faced by single-atom catalysts are summarized, and perspectives related to future research directions including catalytic mechanisms, enhancement of the catalyst loading content, and large-scale implementation are proposed to realize their practical applications. Single-atom catalysts are characterized by high metal dispersibility, weak coordination environments, high catalytic activity and selectivity, and the highest atom utilization. However, due to the free energy of the large surface area, individual atoms are usually unstable and are prone to agglomeration during synthesis and catalytic reactions. Therefore, researchers have developed innovative strategies, such as soft sedimentation, one-pot pyrolysis, coprecipitation, impregnation, step reduction, atomic layer precipitation, and organometallic complexation, to stabilize single-atom catalysts in practical applications. This article summarizes the stabilization strategies for single-atom catalysts from the aspects of their synthesis methods, metal and support types, catalytic reaction types, and its advantages and disadvantages. The focus is on the application of polymers in the preparation and stabilization of single-atom catalysts, including metal single-atom carriers, synthetic templates, encapsulation agents, and the role of polymers as protection agents in the manufacturing process. The main feature of polymers and polymer-derived materials is that they usually contain abundant heteroatoms, such as N, that possess lone-pair electrons. These lone-pair electrons can anchor the single metal atom through strong coordination interactions. The coordination environment of the lone-pair electrons can facilitate the formation of single-atom catalysts because they can enlarge the average distance of a single precursor adsorbed on the polymer matrix. Polymers with nitrogen groups are favorable candidates for dispersing active single atoms by weakening the tendency of metal aggregation and redistributing the charge densities around single atoms to enhance the catalytic performance. This review provides a summary and analysis of the current technical challenges faced by single-atom catalysts and future research directions, such as the catalytic mechanism of single-atom catalysts, sufficiently high loading, and large-scale implementation.

Tài liệu tham khảo

Jansi Rani, B., Ravi, G., Yuvakkumar, R., et al.: CoNiSe2 nanostructures for clean energy production. ACS Omega 5, 14702–14710 (2020). https://doi.org/10.1021/acsomega.0c01476 Olivos-Suarez, A.I., Szécsényi, À., Hensen, E.J.M., et al.: Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS Catal. 6, 2965–2981 (2016). https://doi.org/10.1021/acscatal.6b00428 Hosseini, S.E., Abdul Wahid, M.: The role of renewable and sustainable energy in the energy mix of Malaysia: a review. Int. J. Energy Res. 38, 1769–1792 (2014). https://doi.org/10.1002/er.3190 Dincer, I., Acar, C.: A review on clean energy solutions for better sustainability. Int. J. Energy Res. 39, 585–606 (2015). https://doi.org/10.1002/er.3329 Sørensen, B.: A sustainable energy future: construction of demand and renewable energy supply scenarios. Int. J. Energy Res. 32, 436–470 (2008). https://doi.org/10.1002/er.1375 Duan, J., Tang, X., Dai, H.F., et al.: Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4 Wu, D., Peng, C., Yin, C., et al.: Review of system integration and control of proton exchange membrane fuel cells. Electrochem. Energy Rev. 3, 466–505 (2020). https://doi.org/10.1007/s41918-020-00068-1 Lokhande, P.E., Chavan, U.S., Pandey, A.: Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem. Energy Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z Lu, J.J., Yin, S.B., Shen, P.K.: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2019). https://doi.org/10.1007/s41918-018-0025-9 Jia, Y.F., Yuan, Y., Sun, J., et al.: Porous PEDOT network coated on MoS2 nanobelts toward improving capacitive performance. ACS Sustain. Chem. Eng. 8, 12696–12705 (2020). https://doi.org/10.1021/acssuschemeng.0c04791 Friedl, J., Lebedeva, M.A., Porfyrakis, K., et al.: All-fullerene-based cells for nonaqueous redox flow batteries. J. Am. Chem. Soc. 140, 401–405 (2018). https://doi.org/10.1021/jacs.7b11041 Braun, P.V., Cook, J.B.: Deterministic design of chemistry and mesostructure in Li-ion battery electrodes. ACS Nano 12, 3060–3064 (2018). https://doi.org/10.1021/acsnano.8b01885 Zhou, G.M., Xu, L., Hu, G.W., et al.: Nanowires for electrochemical energy storage. Chem. Rev. 119, 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326 Wang, Y.J., Yang, Y., Zou, L.L., et al.: Carbon-supported W@Pt nanoparticles with a Pt-enriched surface as a robust electrocatalyst for oxygen reduction reactions. ChemistrySelect 3, 1056–1061 (2018). https://doi.org/10.1002/slct.201702493 Li, Y.W., Zhang, W.J., Li, J., et al.: Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Appl. Mater. Interfaces 12, 44710–44719 (2020). https://doi.org/10.1021/acsami.0c11945 Vinod Selvaganesh, S., Selvarani, G., Sridhar, P., et al.: Graphitic carbon as durable cathode-catalyst support for PEFCs. Fuel Cells 11, 372–384 (2011). https://doi.org/10.1002/fuce.201000151 Chen, C., Kang, Y.J., Huo, Z.Y., et al.: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014). https://doi.org/10.1126/science.1249061 Mohanta, P.K., Regnet, F., Jörissen, L.: Impact of highly stable catalyst support materials on polymer electrolyte membrane fuel cell performance. Energy Technol. 8, 2000081 (2020). https://doi.org/10.1002/ente.202000081 Sun, R.L., Xia, Z.X., Qi, F.L., et al.: Efficient design for a high-energy and high-power capability hybrid electric power device with enhanced electrochemical interfaces. ACS Appl. Mater. Interfaces 11, 19943–19949 (2019). https://doi.org/10.1021/acsami.9b01863 Yao, Y., Wang, J., Shahid, U.B., et al.: Electrochemical synthesis of ammonia from nitrogen under mild conditions: current status and challenges. Electrochem. Energy Rev. 3, 239–270 (2020). https://doi.org/10.1007/s41918-019-00061-3 Wang, X.Q., Li, Z.J., Qu, Y.T., et al.: Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5, 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002 Wang, Y., Wang, D.S., Li, Y.D.: A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2, 56–75 (2021). https://doi.org/10.1002/smm2.1023 Keith, J.A., Jacob, T.: Theoretical studies of potential-dependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). Angew. Chem. Int. Ed. 49, 9521–9525 (2010). https://doi.org/10.1002/anie.201004794 Zhang, B.W., Wang, Y.X., Chou, S.L., et al.: Fabrication of superior single-atom catalysts toward diverse electrochemical reactions. Small Methods 3, 1800497 (2019). https://doi.org/10.1002/smtd.201800497 Zhu, C.Z., Fu, S.F., Shi, Q.R., et al.: Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56, 13944–13960 (2017). https://doi.org/10.1002/anie.201703864 Wang, Y.X., Su, H.Y., He, Y.H., et al.: Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 120, 12217–12314 (2020). https://doi.org/10.1021/acs.chemrev.0c00594 Hlatky, G.G.: Heterogeneous single-site catalysts for olefin polymerization. Chem. Rev. 100, 1347–1376 (2000). https://doi.org/10.1021/cr9902401 Ye, R., Zhao, J., Wickemeyer, B.B., et al.: Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat. Catal. 1, 318–325 (2018). https://doi.org/10.1038/s41929-018-0052-2 Wang, M., Chen, L., Sun, L.C.: Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ. Sci. 5, 6763–6778 (2012). https://doi.org/10.1039/c2ee03309g He, Q., Lee, J.H., Liu, D.B., et al.: Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 30, 2000407 (2020). https://doi.org/10.1002/adfm.202000407 Jiao, J., Lin, R., Liu, S., et al.: Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019). https://doi.org/10.1038/s41557-018-0201-x Sun, L.B., Reddu, V., Fisher, A.C., et al.: Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 13, 374–403 (2020). https://doi.org/10.1039/c9ee03660a Wang, X., Peng, X., Chen, W., et al.: Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Nat. Commun. 11, 653 (2020). https://doi.org/10.1038/s41467-020-14287-z Yang, Y.L., Li, F., Chen, J., et al.: Single Au atoms anchored on amino-group-enriched graphitic carbon nitride for photocatalytic CO2 reduction. Chemsuschem 13, 1979–1985 (2020). https://doi.org/10.1002/cssc.202000375 Zhong, L.X., Zhang, L.M., Li, S.Z.: Understanding the activity of carbon-based single-atom electrocatalysts from ab initio simulations. ACS Mater. Lett. 3, 110–120 (2021). https://doi.org/10.1021/acsmaterialslett.0c00419 Singh, B., Sharma, V., Gaikwad, R.P., et al.: Single-atom catalysts: a sustainable pathway for the advanced catalytic applications. Small 17, 2006473 (2021). https://doi.org/10.1002/smll.202006473 Xie, C., Yan, D.F., Li, H., et al.: Defect chemistry in heterogeneous catalysis: recognition, understanding, and utilization. ACS Catal. 10, 11082–11098 (2020). https://doi.org/10.1021/acscatal.0c03034 Zhang, B.L., Yu, H.Y., Wang, J.Q., et al.: Synthesis of CeO2 nanoparticles with different morphologies and their properties as peroxidase mimic. J. Am. Ceram. Soc. 102, 2218–2227 (2019). https://doi.org/10.1111/jace.16071 Jin, R.C., Li, G., Sharma, S., et al.: Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 121, 567–648 (2021). https://doi.org/10.1021/acs.chemrev.0c00495 Ma, Z., Dai, S.: Development of novel supported gold catalysts: a materials perspective. Nano Res. 4, 3–32 (2011). https://doi.org/10.1007/s12274-010-0025-5 Zuliani, A., Ivars, F., Luque, R.: Advances in nanocatalyst design for biofuel production. ChemCatChem 10, 1968–1981 (2018). https://doi.org/10.1002/cctc.201701712 Srinivasan, S., Demirocak, D.E., Kaushik, A., et al.: Reversible hydrogen storage using nanocomposites. Appl. Sci. 10, 4618 (2020). https://doi.org/10.3390/app10134618 Gadipelly, C., Mannepalli, L.K.: Nano-metal oxides for organic transformations. Curr. Opin. Green Sustain. Chem. 15, 20–26 (2019). https://doi.org/10.1016/j.cogsc.2018.08.002 Vignarooban, K., Lin, J., Arvay, A., et al.: Nano-electrocatalyst materials for low temperature fuel cells: a review. Chin. J. Catal. 36, 458–472 (2015). https://doi.org/10.1016/S1872-2067(14)60175-3 Thoda, O., Xanthopoulou, G., Vekinis, G., et al.: Review of recent studies on solution combustion synthesis of nanostructured catalysts. Adv. Eng. Mater. 20, 1800047 (2018). https://doi.org/10.1002/adem.201800047 Niemann, M.U., Srinivasan, S.S., Phani, A.R., et al.: Nanomaterials for hydrogen storage applications: a review. J. Nanomater. 2008, 950967 (2008). https://doi.org/10.1155/2008/950967 Mohamed, R.M., McKinney, D.L., Sigmund, W.M.: Enhanced nanocatalysts. Mater. Sci. Eng. R Rep. 73, 1–13 (2012). https://doi.org/10.1016/j.mser.2011.09.001 Jung, N., Chung, D.Y., Ryu, J., et al.: Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 9, 433–456 (2014). https://doi.org/10.1016/j.nantod.2014.06.006 Ambat, I., Srivastava, V., Sillanpää, M.: Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew. Sustain. Energy Rev. 90, 356–369 (2018). https://doi.org/10.1016/j.rser.2018.03.069 Fukuzumi, S., Yamada, Y., Suenobu, T., et al.: Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy Environ. Sci. 4, 2754–2766 (2011). https://doi.org/10.1039/c1ee01551f Shen, H., Li, Y.J., Shi, Z.Q.: A novel graphdiyne-based catalyst for effective hydrogenation reaction. ACS Appl. Mater. Interfaces 11, 2563–2570 (2019). https://doi.org/10.1021/acsami.8b00566 Liang, H., Li, T.R., Zhang, J., et al.: 3-D hierarchical Ag/ZnO@CF for synergistically removing phenol and Cr(VI): heterogeneous vs. homogeneous photocatalysis. J. Colloid Interface Sci. 558, 85–94 (2020). https://doi.org/10.1016/j.jcis.2019.09.105 Zhou, J., Zhang, Y., Li, S., et al.: Ni/NiO nanocomposites with rich oxygen vacancies as high-performance catalysts for nitrophenol hydrogenation. Catalysts 9, 944 (2019). https://doi.org/10.3390/catal9110944 de Vos, A., Lejaeghere, K., Muniz Miranda, F., et al.: Electronic properties of heterogenized Ru(II) polypyridyl photoredox complexes on covalent triazine frameworks. J. Mater. Chem. A 7, 8433–8442 (2019). https://doi.org/10.1039/c9ta00573k Ge, R.Y., Huo, J.J., Liao, T., et al.: Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction. Appl. Catal. B Environ. 260, 118196 (2020). https://doi.org/10.1016/j.apcatb.2019.118196 Ge, R.Y., Li, W.X., Huo, J.J., et al.: Metal-ion bridged high conductive RGO-M-MoS2 (M = Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) composite electrocatalysts for photo-assisted hydrogen evolution. Appl. Catal. B Environ. 246, 129–139 (2019). https://doi.org/10.1016/j.apcatb.2019.01.047 Zhu, M.Y., Yu, S.J., Ge, R.Y., et al.: Cobalt oxide supported on phosphorus-doped g-C3N4 as an efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 2, 4718–4729 (2019). https://doi.org/10.1021/acsaem.9b00273 Huo, J.J., Chen, Y.L., Liu, Y., et al.: Bifunctional iron nickel phosphide nanocatalysts supported on porous carbon for highly efficient overall water splitting. Sustain. Mater. Technol. 22, e00117 (2019). https://doi.org/10.1016/j.susmat.2019.e00117 Li, W.X., He, X.F., Ge, R.Y., et al.: Cobalt porphyrin (CoTCPP) advanced visible light response of g-C3N4 nanosheets. Sustain. Mater. Technol. 22, e00114 (2019). https://doi.org/10.1016/j.susmat.2019.e00114 Ge, R.Y., Huo, J.J., Sun, M.J., et al.: Surface and interface engineering: molybdenum carbide-based nanomaterials for electrochemical energy conversion. Small 17, 1903380 (2021). https://doi.org/10.1002/smll.201903380 Desalegn, B.Z., Jadhav, H.S., Seo, J.G.: Highly efficient g-C3N4 nanorods with dual active sites as an electrocatalyst for the oxygen evolution reaction. ChemCatChem 11, 2870–2878 (2019). https://doi.org/10.1002/cctc.201900330 Liu, M.M., Wang, L.L., Zhao, K.N., et al.: Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12, 2890–2923 (2019). https://doi.org/10.1039/c9ee01722d Liu, Q., Zhang, Z.L.: Platinum single-atom catalysts: a comparative review towards effective characterization. Catal. Sci. Technol. 9, 4821–4834 (2019). https://doi.org/10.1039/c9cy01028a Vancsó, P., Popov, Z.I., Pető, J., et al.: Transition metal chalcogenide single layers as an active platform for single-atom catalysis. ACS Energy Lett. 4, 1947–1953 (2019). https://doi.org/10.1021/acsenergylett.9b01097 Qiao, B., Wang, A., Yang, X., et al.: Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095 Lin, J., Wang, A.Q., Qiao, B.T., et al.: Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013). https://doi.org/10.1021/ja408574m Wang, Y., Arandiyan, H., Scott, J., et al.: Single atom and nanoclustered Pt catalysts for selective CO2 reduction. ACS Appl. Energy Mater. 1, 6781–6789 (2018). https://doi.org/10.1021/acsaem.8b00817 Sun, M.H., Ji, J.P., Hu, M.Y., et al.: Overwhelming the performance of single atoms with atomic clusters for platinum-catalyzed hydrogen evolution. ACS Catal. 9, 8213–8223 (2019). https://doi.org/10.1021/acscatal.9b02305 Zhang, X., Zhang, Z.H., Wu, D.H., et al.: K1–xMo3P2O14 as support for single-atom catalysts. J. Phys. Chem. C 121, 22895–22900 (2017). https://doi.org/10.1021/acs.jpcc.7b07643 Sun, J.F., Xu, Q.Q., Qi, J.L., et al.: Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions. ACS Sustain. Chem. Eng. 8, 14630–14656 (2020). https://doi.org/10.1021/acssuschemeng.0c04324 Kunwar, D., Zhou, S.L., DeLaRiva, A., et al.: Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 9, 3978–3990 (2019). https://doi.org/10.1021/acscatal.8b04885 Han, C.W., Iddir, H., Uzun, A., et al.: Migration of single iridium atoms and tri-iridium clusters on MgO surfaces: aberration-corrected STEM imaging and ab initio calculations. J. Phys. Chem. Lett. 6, 4675–4679 (2015). https://doi.org/10.1021/acs.jpclett.5b01884 Kwon, K.C., Suh, J.M., Varma, R.S., et al.: Electrocatalytic water splitting and CO2 reduction: sustainable solutions via single-atom catalysts supported on 2D materials. Small Methods 3, 1800492 (2019). https://doi.org/10.1002/smtd.201800492 Büchele, S., Chen, Z.P., Mitchell, S., et al.: Tailoring nitrogen-doped carbons as hosts for single-atom catalysts. ChemCatChem 11, 2812–2820 (2019). https://doi.org/10.1002/cctc.201900547 Sharifi, T., Gracia-Espino, E., Chen, A.R., et al.: Oxygen reduction reactions on single- or few-atom discrete active sites for heterogeneous catalysis. Adv. Energy Mater. 10, 1902084 (2020). https://doi.org/10.1002/aenm.201902084 Wang, A., Li, J., Zhang, T.: Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1 Li, Z., Ji, S.F., Liu, Y.W., et al.: Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev. 120, 623–682 (2020). https://doi.org/10.1021/acs.chemrev.9b00311 Wang, L.Q., Huang, L., Liang, F., et al.: Preparation, characterization and catalytic performance of single-atom catalysts. Chin. J. Catal. 38, 1528–1539 (2017). https://doi.org/10.1016/S1872-2067(17)62770-0 Lang, R., Li, T.B., Matsumura, D., et al.: Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 55, 16054–16058 (2016). https://doi.org/10.1002/anie.201607885 Li, J.C., Wei, Z.D., Liu, D., et al.: Dispersive single-atom metals anchored on functionalized nanocarbons for electrochemical reactions. In: Shao, M.H. (ed.) Electrocatalysis. Topics in Current Chemistry Collections, pp. 127–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43294-2_5 Wang, Q., Astruc, D.: State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 120, 1438–1511 (2020). https://doi.org/10.1021/acs.chemrev.9b00223 Song, Z.X., Zhang, L., Doyle-Davis, K., et al.: Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv. Energy Mater. 10, 2001561 (2020). https://doi.org/10.1002/aenm.202001561 Wang, H.F., Chen, L.Y., Pang, H., et al.: MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414–1448 (2020). https://doi.org/10.1039/c9cs00906j Lu, X.F., Xia, B.Y., Zang, S.Q., et al.: Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 59, 4634–4650 (2020). https://doi.org/10.1002/anie.201910309 Guo, J.J., Huo, J.J., Liu, Y., et al.: Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Methods 3, 1900159 (2019). https://doi.org/10.1002/smtd.201900159 Xu, J.T., Ouyang, J.Y., Fan, Z.Q., et al.: Polymer-supported half-titanocene catalysts for the syndiospecific polymerization of styrene. J. Polym. Sci. A Polym. Chem. 38, 127–135 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000101)38:1%3c127::AID-POLA17%3e3.0.CO;2-8 Chen, W.X., Pei, J.J., He, C.T., et al.: Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem. Int. Ed. 56, 16086–16090 (2017). https://doi.org/10.1002/anie.201710599 Wei, Y.S., Zhang, M., Zou, R.Q., et al.: Metal–organic framework-based catalysts with single metal sites. Chem. Rev. 120, 12089–12174 (2020). https://doi.org/10.1021/acs.chemrev.9b00757 Chen, Y., Ji, S., Zhao, S., et al.: Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9, 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2 Wang, X., Chen, W.X., Zhang, L., et al.: Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 139, 9419–9422 (2017). https://doi.org/10.1021/jacs.7b01686 Wang, J.P., Han, G.K., Wang, L.G., et al.: ZIF-8 with ferrocene encapsulated: a promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 14, 1704282 (2018). https://doi.org/10.1002/smll.201704282 Chen, Y.J., Ji, S.F., Wang, Y.G., et al.: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017). https://doi.org/10.1002/anie.201702473 Ji, S.F., Chen, Y.J., Fu, Q., et al.: Confined pyrolysis within metal–organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 139, 9795–9798 (2017). https://doi.org/10.1021/jacs.7b05018 He, Y.H., Hwang, S., Cullen, D.A., et al.: Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon–shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019). https://doi.org/10.1039/c8ee02694g Zhao, J., Wang, Y.N., Dong, W.W., et al.: A new surfactant-introduction strategy for separating the pure single-phase of metal–organic frameworks. Chem. Commun. Camb. Engl. 51, 9479–9482 (2015). https://doi.org/10.1039/c5cc02043c Pan, Y.C., Heryadi, D., Zhou, F., et al.: Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 13, 6937–6940 (2011). https://doi.org/10.1039/c1ce05780d Ji, S.F., Chen, Y.J., Wang, X.L., et al.: Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020). https://doi.org/10.1021/acs.chemrev.9b00818 Jeong, H., Shin, S., Lee, H.: Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts. ACS Nano 14, 14355–14374 (2020). https://doi.org/10.1021/acsnano.0c06610 Kaiser, S.K., Chen, Z.P., Faust Akl, D., et al.: Single-atom catalysts across the periodic table. Chem. Rev. 120, 11703–11809 (2020). https://doi.org/10.1021/acs.chemrev.0c00576 Lang, R., Du, X.R., Huang, Y.K., et al.: Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 120, 11986–12043 (2020). https://doi.org/10.1021/acs.chemrev.0c00797 Nguyen, T.N., Salehi, M., Le, Q.V., et al.: Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 10, 10068–10095 (2020). https://doi.org/10.1021/acscatal.0c02643 Zhuo, H.Y., Zhang, X., Liang, J.X., et al.: Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem. Rev. 120, 12315–12341 (2020). https://doi.org/10.1021/acs.chemrev.0c00818 Liao, Y.Z., Cheng, Z.H., Zuo, W.W., et al.: Nitrogen-rich conjugated microporous polymers: facile synthesis, efficient gas storage, and heterogeneous catalysis. ACS Appl. Mater. Interfaces 9, 38390–38400 (2017). https://doi.org/10.1021/acsami.7b09553 Li, C.: Single Co atom catalyst stabilized in C/N containing matrix. Chin. J. Catal. 37, 1443–1445 (2016). https://doi.org/10.1016/S1872-2067(16)62520-2 Wu, G.H., Huang, H., Rong, J.F., et al.: Recent advances in non-noble metal single atom catalysts. Acta Petrolei Sinica 34, 639–650 (2018) Zhang, H.B., Liu, G.G., Shi, L., et al.: Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018). https://doi.org/10.1002/aenm.201701343 Zhang, R.G., Peng, M., Ling, L.X., et al.: PdIn intermetallic material with isolated single-atom Pd sites: a promising catalyst for direct formic acid fuel cell. Chem. Eng. Sci. 199, 64–78 (2019). https://doi.org/10.1016/j.ces.2019.01.018 Ling, C.Y., Li, Q., Du, A.J., et al.: Computation-aided design of single-atom catalysts for one-pot CO2 capture, activation, and conversion. ACS Appl. Mater. Interfaces 10, 36866–36872 (2018). https://doi.org/10.1021/acsami.8b10394 Zhang, J., Sun, P., Zhao, Z.L., et al.: Application of heterogeneous catalysts in olefin hydroformylation. Chin. Sci. Bull. 64, 3173–3187 (2019). https://doi.org/10.1360/N972019-00160 Zhong, W.H., Zhang, G.Z., Zhang, Y.C., et al.: Enhanced activity of C2N-supported single Co atom catalyst by single atom promoter. J. Phys. Chem. Lett. 10, 7009–7014 (2019). https://doi.org/10.1021/acs.jpclett.9b02906 Liu, C.G., Jiang, M.X., Su, Z.M.: Computational study on M1/POM single-atom catalysts (M = Cu, Zn, Ag, and Au; POM =[PW12O40]3–): metal-support interactions and catalytic cycle for alkene epoxidation. Inorg. Chem. 56, 10496–10504 (2017). https://doi.org/10.1021/acs.inorgchem.7b01480 Karmakar, S., Chowdhury, C., Datta, A.: Noble-metal-supported GeS monolayer as promising single-atom catalyst for CO oxidation. J. Phys. Chem. C 122, 14488–14498 (2018). https://doi.org/10.1021/acs.jpcc.8b02442 Liu, S.Q., Liu, Y.W., Gao, X.P., et al.: Two-dimensional transition metal porphyrin sheets as a promising single-atom-catalyst for dinitrogen electrochemical reduction to ammonia: a theoretical study. J. Phys. Chem. C 124, 1492–1499 (2020). https://doi.org/10.1021/acs.jpcc.9b10294 Ling, C.Y., Ouyang, Y.X., Li, Q., et al.: A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 3, 1800376 (2019). https://doi.org/10.1002/smtd.201800376 Liao, T., Kou, L.Z., Du, A.J., et al.: H2S sensing and splitting on atom-functionalized carbon nanotubes: a theoretical study. Adv. Theory Simul. 1, 1700033 (2018). https://doi.org/10.1002/adts.201700033 Liao, T., Sun, Z.Q., Kim, J.H., et al.: Theoretically designed metal-welded carbon nanotubes: extraordinary electronic properties and promoted catalytic performance. Nano Energy 32, 209–215 (2017). https://doi.org/10.1016/j.nanoen.2016.12.033 Chen, L.N., Hou, K.P., Liu, Y.S., et al.: Efficient hydrogen production from methanol using a single-site Pt1/CeO2 catalyst. J. Am. Chem. Soc. 141, 17995–17999 (2019). https://doi.org/10.1021/jacs.9b09431 Liu, K., Hou, G., Mao, J., et al.: Genesis of electron deficient Pt1(0) in PDMS-PEG aggregates. Nat. Commun. 10, 996 (2019). https://doi.org/10.1038/s41467-019-08804-y Song, H., Rioux, R.M., Hoefelmeyer, J.D., et al.: Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 128, 3027–3037 (2006). https://doi.org/10.1021/ja057383r Wu, C.Q., Li, D.D., Ding, S.Q., et al.: Monoatomic platinum-anchored metallic MoS2: correlation between surface dopant and hydrogen evolution. J. Phys. Chem. Lett. 10, 6081–6087 (2019). https://doi.org/10.1021/acs.jpclett.9b01892 Zhao, D., Chen, Z., Yang, W.J., et al.: MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141, 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579 Zhang, Y.L., Li, X.K., Li, K., et al.: Novel Au catalysis strategy for the synthesis of Au@Pt core–shell nanoelectrocatalyst with self-controlled quasi-monolayer Pt skin. ACS Appl. Mater. Interfaces 9, 32688–32697 (2017). https://doi.org/10.1021/acsami.7b08210 Zhang, L., Doyle-Davis, K., Sun, X.L.: Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ. Sci. 12, 492–517 (2019). https://doi.org/10.1039/c8ee02939c Tang, Y., Wang, Y.G., Li, J.: Theoretical investigations of Pt1@CeO2 single-atom catalyst for CO oxidation. J. Phys. Chem. C 121, 11281–11289 (2017). https://doi.org/10.1021/acs.jpcc.7b00313 Yang, S., Kim, J., Tak, Y.J., et al.: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed Engl. 55, 2058–2062 (2016). https://doi.org/10.1002/anie.201509241 Yan, D.X., Chen, J., Jia, H.P.: Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst. Angew. Chem. Int. Ed. 59, 13562–13567 (2020). https://doi.org/10.1002/anie.202004929 Woo, H., Lee, E.K., Yun, S.W., et al.: Platinum single atoms on carbon nanotubes as efficient catalyst for hydroalkoxylation. Bull. Korean Chem. Soc. 38, 1221–1225 (2017). https://doi.org/10.1002/bkcs.11252 Langer, R., Fako, E., Błoński, P., et al.: Anchoring of single-platinum-adatoms on cyanographene: experiment and theory. Appl. Mater. Today 18, 100462 (2020). https://doi.org/10.1016/j.apmt.2019.100462 Peng, Y.H., Geng, Z.G., Zhao, S.T., et al.: Pt single atoms embedded in the surface of Ni nanocrystals as highly active catalysts for selective hydrogenation of nitro compounds. Nano Lett. 18, 3785–3791 (2018). https://doi.org/10.1021/acs.nanolett.8b01059 Wang, D.L., Li, H.P., Du, N., et al.: Single platinum atoms immobilized on monolayer tungsten trioxide nanosheets as an efficient electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater. 31, 2009770 (2021). https://doi.org/10.1002/adfm.202009770 Harrath, K., Yu, X.H., Xiao, H., et al.: The key role of support surface hydrogenation in the CH4 to CH3OH selective oxidation by a ZrO2-supported single-atom catalyst. ACS Catal. 9, 8903–8909 (2019). https://doi.org/10.1021/acscatal.9b02093 Jongkind, L., Caumes, X., Hartendorp, A.P.T., et al.: Ligand template strategies for catalyst encapsulation. Acc. Chem. Res. 51, 2115–2128 (2018). https://doi.org/10.1021/acs.accounts.8b00345 Lou, Y., Zheng, Y.P., Li, X., et al.: Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J. Am. Chem. Soc. 141, 19289–19295 (2019). https://doi.org/10.1021/jacs.9b06628 Han, B., Lang, R., Tang, H.L., et al.: Superior activity of Rh1/ZnO single-atom catalyst for CO oxidation. Chin. J. Catal. 40, 1847–1853 (2019). https://doi.org/10.1016/S1872-2067(19)63411-X Tang, Y., Asokan, C., Xu, M., et al.: Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 10, 4488 (2019). https://doi.org/10.1038/s41467-019-12461-6 Kodama, K., Jinnouchi, R., Takahashi, N., et al.: Activities and stabilities of Au-modified stepped-Pt single-crystal electrodes as model cathode catalysts in polymer electrolyte fuel cells. J. Am. Chem. Soc. 138, 4194–4200 (2016). https://doi.org/10.1021/jacs.6b00359 Chen, Z., Chen, Y.J., Chao, S.L., et al.: Single-atom AuI-N3 site for acetylene hydrochlorination reaction. ACS Catal. 10, 1865–1870 (2020). https://doi.org/10.1021/acscatal.9b05212 Cao, S.F., Yang, M., Elnabawy, A.O., et al.: Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nat. Chem. 11, 1098–1105 (2019). https://doi.org/10.1038/s41557-019-0345-3 Xi, W., Wang, K., Shen, Y.L., et al.: Dynamic co-catalysis of Au single atoms and nanoporous Au for methane pyrolysis. Nat. Commun. 11, 1919 (2020). https://doi.org/10.1038/s41467-020-15806-8 Tian, C.C., Zhang, H.Y., Zhu, X., et al.: A new trick for an old support: stabilizing gold single atoms on LaFeO3 perovskite. Appl. Catal. B Environ. 261, 118178 (2020). https://doi.org/10.1016/j.apcatb.2019.118178 Liu, D., Li, J.C., Shi, Q.R., et al.: Atomically isolated iron atom anchored on carbon nanotubes for oxygen reduction reaction. ACS Appl. Mater. Interfaces 11, 39820–39826 (2019). https://doi.org/10.1021/acsami.9b12054 Gao, Y., Cai, Z.W., Wu, X.C., et al.: Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal. 8, 10364–10374 (2018). https://doi.org/10.1021/acscatal.8b02360 Hou, C.C., Zou, L.L., Sun, L.M., et al.: Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 59, 7384–7389 (2020). https://doi.org/10.1002/anie.202002665 Li, J.C., Tang, D.M., Hou, P.X., et al.: The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts. MRS Commun. 8, 1158–1166 (2018). https://doi.org/10.1557/mrc.2018.174 Gole, J.L., White, M.G.: Nanocatalysis: selective conversion of ethanol to acetaldehyde using mono-atomically dispersed copper on silica nanospheres. J. Catal. 204, 249–252 (2001). https://doi.org/10.1006/jcat.2001.3335 Hajifatheali, H., Ahmadi, E., Wojtczak, A., et al.: The synthesis of N-methylbis[2-(dodecylthio)ethyl]amine (SNS) and investigation of its efficiency as new mononuclear catalyst complex in copper-based ATRP. Macromol. Res. 23, 977–985 (2015). https://doi.org/10.1007/s13233-015-3132-z Qin, L., Cui, Y.Q., Deng, T.L., et al.: Highly stable and active Cu1/CeO2 single-atom catalyst for CO oxidation: a DFT study. ChemPhysChem 19, 3346–3349 (2018). https://doi.org/10.1002/cphc.201800860 Zhao, C.M., Dai, X.Y., Yao, T., et al.: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736 Ling, C.Y., Shi, L., Ouyang, Y.X., et al.: Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 17, 5133–5139 (2017). https://doi.org/10.1021/acs.nanolett.7b02518 Dai, X.Y., Chen, Z., Yao, T., et al.: Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 53, 11568–11571 (2017). https://doi.org/10.1039/c7cc04820c Cao, X.R., Ji, Y.F., Luo, Y.: Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: insight from first-principles calculations. J. Phys. Chem. C 119, 1016–1023 (2015). https://doi.org/10.1021/jp508625b Marcinkowski, M.D., Yuk, S.F., Doudin, N., et al.: Low-temperature oxidation of methanol to formaldehyde on a model single-atom catalyst: Pd atoms on Fe3O4(001). ACS Catal. 9, 10977–10982 (2019). https://doi.org/10.1021/acscatal.9b03891 Zhou, S.Q., Shang, L., Zhao, Y.X., et al.: Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 31, 1900509 (2019). https://doi.org/10.1002/adma.201900509 Liang, J.X., Lin, J., Yang, X.F., et al.: Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C 118, 21945–21951 (2014). https://doi.org/10.1021/jp503769d Lu, Y.B., Kuo, C.T., Kovarik, L., et al.: A versatile approach for quantification of surface site fractions using reaction kinetics: the case of CO oxidation on supported Ir single atoms and nanoparticles. J. Catal. 378, 121–130 (2019). https://doi.org/10.1016/j.jcat.2019.08.023 Wang, Q., Huang, X., Zhao, Z.L., et al.: Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 142, 7425–7433 (2020). https://doi.org/10.1021/jacs.9b12642 Du, Z.Z., Chen, X.J., Hu, W., et al.: Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973 Kim, K., Kang, T., Kim, M., et al.: Three-dimensional entangled and twisted structures of nitrogen doped poly-(1,4-diethynylbenzene) chain combined with cobalt single atom as a highly efficient bifunctional electrocatalyst. Appl. Catal. B Environ. 275, 119107 (2020). https://doi.org/10.1016/j.apcatb.2020.119107 Mori, K., Taga, T., Yamashita, H.: Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 7, 3147–3151 (2017). https://doi.org/10.1021/acscatal.7b00312 Wang, D.W., Li, Q., Han, C., et al.: Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B Environ. 249, 91–97 (2019). https://doi.org/10.1016/j.apcatb.2019.02.059 Schwerdtfeger, E.D., Irwin, L.J., Miller, S.A.: Highly branched polyethylene from ethylene alone via a single zirconium-based catalyst. Macromolecules 41, 1080–1085 (2008). https://doi.org/10.1021/ma702213c Yang, F., Song, P., Liu, X.Z., et al.: Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57, 12303–12307 (2018). https://doi.org/10.1002/anie.201805871 Guan, J.Q., Duan, Z.Y., Zhang, F.X., et al.: Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 1, 870–877 (2018). https://doi.org/10.1038/s41929-018-0158-6 Kong, N.N., Fan, X., Liu, F.F., et al.: Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano 14, 5772–5779 (2020). https://doi.org/10.1021/acsnano.0c00659 Saini, P.K., Romain, C., Williams, C.K.: Dinuclear metal catalysts: improved performance of heterodinuclear mixed catalysts for CO2-epoxide copolymerization. Chem. Commun. 50, 4164–4167 (2014). https://doi.org/10.1039/c3cc49158g Zhang, W.Y., Chao, Y.G., Zhang, W.S., et al.: Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 33, 2102576 (2021). https://doi.org/10.1002/adma.202102576 Shi, Q., Ji, Y.J., Chen, W.X., et al.: Single-atom Sn–Zn pairs in CuO catalyst promote dimethyldichlorosilane synthesis. Natl. Sci. Rev. 7, 600–608 (2019). https://doi.org/10.1093/nsr/nwz196 Bai, L.C., Hsu, C.S., Alexander, D.T.L., et al.: A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190–14199 (2019). https://doi.org/10.1021/jacs.9b05268 Fan, M.M., Cui, J.W., Wu, J.J., et al.: Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping. Small 16, 1906782 (2020). https://doi.org/10.1002/smll.201906782 Zhang, L.L., Wang, A.Q., Miller, J.T., et al.: Efficient and durable Au alloyed Pd single-atom catalyst for the Ullmann reaction of aryl chlorides in water. ACS Catal. 4, 1546–1553 (2014). https://doi.org/10.1021/cs500071c Pei, G.X., Liu, X.Y., Yang, X.F., et al.: Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 7, 1491–1500 (2017). https://doi.org/10.1021/acscatal.6b03293 Wang, W.L., Santos, E.J.G., Jiang, B., et al.: Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett. 14, 450–455 (2014). https://doi.org/10.1021/nl403327u Alexopoulos, K., Vlachos, D.G.: Surface chemistry dictates stability and oxidation state of supported single metal catalyst atoms. Chem. Sci. 11, 1469–1477 (2020). https://doi.org/10.1039/c9sc05944j Yang, X.F., Wang, A.Q., Qiao, B.T., et al.: Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). https://doi.org/10.1021/ar300361m Lai, W.H., Miao, Z.C., Wang, Y.X., et al.: Atomic-local environments of single-atom catalysts: synthesis, electronic structure, and activity. Adv. Energy Mater. 9, 1900722 (2019). https://doi.org/10.1002/aenm.201900722 Wang, B., Cai, H.R., Shen, S.H.: Single metal atom photocatalysis. Small Methods 3, 1800447 (2019). https://doi.org/10.1002/smtd.201800447 Zheng, N.F., Zhang, T.: Preface: single-atom catalysts as a new generation of heterogeneous catalysts. Natl. Sci. Rev. 5, 625–625 (2018). https://doi.org/10.1093/nsr/nwy095 Wang, Y., Bao, S.X., Li, R., et al.: Universal strategy for homogeneously doping noble metals into cyano-bridged coordination polymers. ACS Appl. Mater. Interfaces 7, 2088–2096 (2015). https://doi.org/10.1021/am508246m Lyu, D.D., Mollamahale, Y.B., Huang, S.L., et al.: Ultra-high surface area graphitic Fe–N–C nanospheres with single-atom iron sites as highly efficient non-precious metal bifunctional catalysts towards oxygen redox reactions. J. Catal. 368, 279–290 (2018). https://doi.org/10.1016/j.jcat.2018.10.025 Wang, J., Li, Z.J., Wu, Y.E., et al.: Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater. 30, e1801649 (2018). https://doi.org/10.1002/adma.201801649 Yan, H., Su, C.L., He, J., et al.: Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 6, 8793–8814 (2018). https://doi.org/10.1039/c8ta01940a Zhang, Q.Q., Guan, J.Q.: Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 30, 2000768 (2020). https://doi.org/10.1002/adfm.202000768 Qi, J.L., Xu, Q.Q., Sun, J.F., et al.: Synthesis, characterization and analysis of graphene-supported single-atom catalysts. Prog. Chem. 32, 505–518 (2020) Wu, W.H., Lei, W., Wang, L.Q., et al.: Preparation of single atom catalysts. Prog. Chem. 32, 23–32 (2020). https://doi.org/10.7536/PC190704 Alarawi, A., Ramalingam, V., He, J.H.: Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater. Today Energy 11, 1–23 (2019). https://doi.org/10.1016/j.mtener.2018.10.014 Guo, W.X., Wang, Z.Y., Wang, X.Q., et al.: General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 33, 2004287 (2021). https://doi.org/10.1002/adma.202004287 Zou, L.L., Wei, Y.S., Hou, C.C., et al.: Single-atom catalysts derived from metal–organic frameworks for electrochemical applications. Small 17, 2004809 (2021). https://doi.org/10.1002/smll.202004809 Xiong, H.F., Datye, A.K., Wang, Y.: Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 33, 2004319 (2021). https://doi.org/10.1002/adma.202004319 Han, B., Lang, R., Qiao, B.T., et al.: Highlights of the major progress in single-atom catalysis in 2015 and 2016. Chin. J. Catal. 38, 1498–1507 (2017). https://doi.org/10.1016/S1872-2067(17)62872-9 Zhu, Y.Z., Peng, W.C., Li, Y., et al.: Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 3, 1800438 (2019). https://doi.org/10.1002/smtd.201800438 Gawande, M.B., Fornasiero, P., Zbořil, R.: Carbon-based single-atom catalysts for advanced applications. ACS Catal. 10, 2231–2259 (2020). https://doi.org/10.1021/acscatal.9b04217 Abbet, S., Sanchez, A., Heiz, U., et al.: Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 \(\leqslant\) n \(\leqslant\) 30): one atom is enough! J. Am. Chem. Soc. 122, 3453–3457 (2000). https://doi.org/10.1021/ja9922476 Tyo, E.C., Vajda, S.: Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015). https://doi.org/10.1038/nnano.2015.140 Johnson, G.E., Priest, T., Laskin, J.: Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions. ACS Nano 6, 573–582 (2012). https://doi.org/10.1021/nn2039565 Laskin, J., Johnson, G.E., Prabhakaran, V.: Soft landing of complex ions for studies in catalysis and energy storage. J. Phys. Chem. C 120, 23305–23322 (2016). https://doi.org/10.1021/acs.jpcc.6b06497 Chen, Y.J., Ji, S.F., Chen, C., et al.: Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019 Vajda, S., White, M.G.: Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015). https://doi.org/10.1021/acscatal.5b01816 Jin, Y.Y., Hao, P.P., Ren, J., et al.: Single atom catalysis: concept, method and application. Prog. Chem. 27, 1689–1704 (2015) Liu, J.Y.: Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017). https://doi.org/10.1021/acscatal.6b01534 Dasgupta, N.P., Li, L., Sun, X.L.: Atomic layer deposition for energy and environmental applications. Adv. Mater. Interfaces 3, 1600914 (2016). https://doi.org/10.1002/admi.201600914 O’Neill, B.J., Jackson, D.H.K., Lee, J., et al.: Catalyst design with atomic layer deposition. ACS Catal. 5, 1804–1825 (2015). https://doi.org/10.1021/cs501862h Wang, H.W., Lu, J.L.: Atomic layer deposition: a gas phase route to bottom-up precise synthesis of heterogeneous catalyst. Acta Phys. Chim. Sin. 34, 1334–1357 (2018). https://doi.org/10.3866/pku.whxb201804201 Zhang, N.Q., Li, L.C., Huang, X., et al.: Research progress of single-atom catalysis. J. Chin. Soc. Rare Earths 36, 513–532 (2018) Cheng, N.C., Sun, X.L.: Single atom catalyst by atomic layer deposition technique. Chin. J. Catal. 38, 1508–1514 (2017). https://doi.org/10.1016/S1872-2067(17)62903-6 Wang, C.L., Gu, X.-K., Yan, H., et al.: Water-mediated Mars–van Krevelen mechanism for CO oxidation on ceria supported single-atom Pt1 catalyst. ACS Catal. 7, 887–891 (2016). https://doi.org/10.1021/acscatal.6b02685 Yan, H., Lv, H.F., Yi, H., et al.: Understanding the underlying mechanism of improved selectivity in Pd1 single-atom catalyzed hydrogenation reaction. J. Catal. 366, 70–79 (2018). https://doi.org/10.1016/j.jcat.2018.07.033 Yan, H., Cheng, H., Yi, H., et al.: Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137, 10484–10487 (2015). https://doi.org/10.1021/jacs.5b06485 Jiang, C.J., Shang, Z.Y., Liang, X.H.: Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles. ACS Catal. 5, 4814–4818 (2015). https://doi.org/10.1021/acscatal.5b00969 Sun, S.H., Zhang, G.X., Gauquelin, N., et al.: Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3, 1775 (2013). https://doi.org/10.1038/srep01775 Lang, R., Xi, W., Liu, J.C., et al.: Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234 (2019). https://doi.org/10.1038/s41467-018-08136-3 Jones, J., Xiong, H.F., DeLaRiva, A.T., et al.: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016). https://doi.org/10.1126/science.aaf8800 Cui, X.J., Dai, X.C., Surkus, A.E., et al.: Zinc single atoms on N-doped carbon: an efficient and stable catalyst for CO2 fixation and conversion. Chin. J. Catal. 40, 1679–1685 (2019). https://doi.org/10.1016/S1872-2067(19)63316-4 Zhao, S.Y., Cheng, Y., Veder, J.P., et al.: One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading. ACS Appl. Energy Mater. 1, 5286–5297 (2018). https://doi.org/10.1021/acsaem.8b00903 Yang, H.B., Hung, S.F., Liu, S., et al.: Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8 Jiao, L., Yang, W.J., Wan, G., et al.: Single-atom electrocatalysts from multivariate metal–organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 59, 20589–20595 (2020). https://doi.org/10.1002/anie.202008787 Cheon, J.Y., Kim, T., Choi, Y., et al.: Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Sci. Rep. 3, 2715 (2013). https://doi.org/10.1038/srep02715 Yi, J.D., Xu, R., Wu, Q., et al.: Atomically dispersed iron-nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett. 3, 883–889 (2018). https://doi.org/10.1021/acsenergylett.8b00245 Sa, Y.J., Seo, D.J., Woo, J., et al.: A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 138, 15046–15056 (2016). https://doi.org/10.1021/jacs.6b09470 Cheng, Y., He, S., Lu, S.F., et al.: Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells. Adv. Sci. 6, 1802066 (2019). https://doi.org/10.1002/advs.201802066 Derevyannikova, E.A., Kardash, T.Y., Stadnichenko, A.I., et al.: Structural insight into strong Pt–CeO2 interaction: from single Pt atoms to PtOx clusters. J. Phys. Chem. C 123, 1320–1334 (2019). https://doi.org/10.1021/acs.jpcc.8b11009 Jan, A., Shin, J., Ahn, J., et al.: Promotion of Pt/CeO2 catalyst by hydrogen treatment for low-temperature CO oxidation. RSC Adv. 9, 27002–27012 (2019). https://doi.org/10.1039/c9ra05965b Zhu, Y.F., Kong, X., Yin, J.Q., et al.: Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. J. Catal. 353, 315–324 (2017). https://doi.org/10.1016/j.jcat.2017.07.030 Zheng, T.Q., Zhou, W., Gao, Y., et al.: Active impregnation method for copper foam as catalyst support for methanol steam reforming for hydrogen production. Ind. Eng. Chem. Res. 58, 4387–4395 (2019). https://doi.org/10.1021/acs.iecr.8b05241 Feng, S.Q., Song, X.G., Ren, Z., et al.: La-stabilized, single-atom Ir/AC catalyst for heterogeneous methanol carbonylation to methyl acetate. Ind. Eng. Chem. Res. 58, 4755–4763 (2019). https://doi.org/10.1021/acs.iecr.8b05402 Yang, H.L., Liu, Q.G., Li, Y., et al.: Isolated single-atom ruthenium anchored on beta zeolite as an efficient heterogeneous catalyst for styrene epoxidation. ChemNanoMat 6, 1647–1651 (2020). https://doi.org/10.1002/cnma.202000394 Jiang, R.H., Liu, S.M., Li, L., et al.: Single Ir atoms anchored on ordered mesoporous WO3 are highly efficient for the selective catalytic reduction of NO with CO under oxygen-rich conditions. ChemCatChem 13, 1834–1846 (2021). https://doi.org/10.1002/cctc.202001784 Kwon, Y., Kim, T.Y., Kwon, G., et al.: Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 139, 17694–17699 (2017). https://doi.org/10.1021/jacs.7b11010 Hai, X., Xi, S., Mitchell, S., et al.: Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022). https://doi.org/10.1038/s41565-021-01022-y Kaiser, S.K., Fako, E., Manzocchi, G., et al.: Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 3, 376–385 (2020). https://doi.org/10.1038/s41929-020-0431-3 Szilágyi, P.Á., Rogers, D.M., Zaiser, I., et al.: Functionalised metal–organic frameworks: a novel approach to stabilising single metal atoms. J. Mater. Chem. A 5, 15559–15566 (2017). https://doi.org/10.1039/C7TA03134C Liu, S.S., Tan, J.M., Gulec, A., et al.: Stabilizing single-atom and small-domain platinum via combining organometallic chemisorption and atomic layer deposition. Organometallics 36, 818–828 (2017). https://doi.org/10.1021/acs.organomet.6b00869 Sun, Q.M., Wang, N., Zhang, T.J., et al.: Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58, 18570–18576 (2019). https://doi.org/10.1002/anie.201912367 Yang, H.Z., Shang, L., Zhang, Q.H., et al.: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 10, 4585 (2019). https://doi.org/10.1038/s41467-019-12510-0 Gao, C., Chen, S.M., Wang, Y., et al.: Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer. Adv. Mater. 30, 1704624 (2018). https://doi.org/10.1002/adma.201704624 Abdel-Mageed, A.M., Rungtaweevoranit, B., Parlinska-Wojtan, M., et al.: Highly active and stable single-atom Cu catalysts supported by a metal–organic framework. J. Am. Chem. Soc. 141, 5201–5210 (2019). https://doi.org/10.1021/jacs.8b11386 Razmjooei, F., Yu, J.H., Lee, H.Y., et al.: Single-atom iron-based electrocatalysts for high-temperature polymer electrolyte membrane fuel cell: organometallic precursor and pore texture tailoring. ACS Appl. Energy Mater. 3, 11164–11176 (2020). https://doi.org/10.1021/acsaem.0c02111 Zheng, Y., Qiao, S.Z.: Metal–organic framework assisted synthesis of single-atom catalysts for energy applications. Natl. Sci. Rev. 5, 626–627 (2018). https://doi.org/10.1093/nsr/nwy010 Oisaki, K., Li, Q.W., Furukawa, H., et al.: A metal–organic framework with covalently bound organometallic complexes. J. Am. Chem. Soc. 132, 9262–9264 (2010). https://doi.org/10.1021/ja103016y Fan, Y., Liu, S.G., Yi, Y., et al.: Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts. ACS Nano 15, 2005–2037 (2021). https://doi.org/10.1021/acsnano.0c06962 Rivera-Cárcamo, C., Serp, P.: Single atom catalysts on carbon-based materials. ChemCatChem 10, 5058–5091 (2018). https://doi.org/10.1002/cctc.201801174 Kim, M.S., Park, H., Won, S.O., et al.: Copper-halide polymer nanowires as versatile supports for single-atom catalysts. Small 15, 1903197 (2019). https://doi.org/10.1002/smll.201903197 Lin, R.H., Albani, D., Fako, E., et al.: Design of single gold atoms on nitrogen-doped carbon for molecular recognition in alkyne semi-hydrogenation. Angew. Chem. Int. Ed. 58, 504–509 (2019). https://doi.org/10.1002/anie.201805820 Li, Q.H., Chen, W.X., Xiao, H., et al.: Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 30, 1800588 (2018). https://doi.org/10.1002/adma.201800588 Pan, Y., Chen, Y.J., Wu, K.L., et al.: Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 10, 4290 (2019). https://doi.org/10.1038/s41467-019-12362-8 Li, X.N., Huang, X., Xi, S.B., et al.: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 140, 12469–12475 (2018). https://doi.org/10.1021/jacs.8b05992 Liu, J.H., Yang, L.M., Ganz, E.: Efficient and selective electroreduction of CO2 by single-atom catalyst two-dimensional TM-Pc monolayers. ACS Sustain. Chem. Eng. 6, 15494–15502 (2018). https://doi.org/10.1021/acssuschemeng.8b03945 Chen, X.F., Yan, J.M., Jiang, Q.: Single layer of polymeric metal-phthalocyanine: promising substrate to realize single Pt atom catalyst with uniform distribution. J. Phys. Chem. C 118, 2122–2128 (2014). https://doi.org/10.1021/jp411183h Abel, M., Clair, S., Ourdjini, O., et al.: Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film. J. Am. Chem. Soc. 133, 1203–1205 (2011). https://doi.org/10.1021/ja108628r He, X.H., He, Q., Deng, Y.C., et al.: A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 10, 3663 (2019). https://doi.org/10.1038/s41467-019-11619-6 Pan, Y., Liu, S.J., Sun, K.A., et al.: A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe–N4 catalytic site: a superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem. Int. Ed. 57, 8614–8618 (2018). https://doi.org/10.1002/anie.201804349 Wu, H.H., Li, H.B., Zhao, X.F., et al.: Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ. Sci. 9, 3736–3745 (2016). https://doi.org/10.1039/c6ee01867j Wu, K.L., Chen, X., Liu, S.J., et al.: Porphyrin-like Fe–N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 11, 6260–6269 (2018). https://doi.org/10.1007/s12274-018-2149-y Yang, H.Z., Shi, R., Shang, L., et al.: Recent advancements of porphyrin-like single-atom catalysts: synthesis and applications. Small Struct. 2, 2100007 (2021). https://doi.org/10.1002/sstr.202100007 Zheng, Y., Jiao, Y., Zhu, Y.H., et al.: Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017). https://doi.org/10.1021/jacs.6b13100 Ren, C.J., Jiang, Q.Y., Lin, W., et al.: Density functional theory study of single-atom V, Nb, and Ta catalysts on graphene and carbon nitride for selective nitrogen reduction. ACS Appl. Nano Mater. 3, 5149–5159 (2020). https://doi.org/10.1021/acsanm.0c00512 Chen, Y.J., Ji, S.F., Sun, W.M., et al.: Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 140, 7407–7410 (2018). https://doi.org/10.1021/jacs.8b03121 Liu, L.M., Wang, N., Zhu, C.Z., et al.: Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819–825 (2020). https://doi.org/10.1002/anie.201909834 Davis, M.E.: Ordered porous materials for emerging applications. Nature 417, 813–821 (2002). https://doi.org/10.1038/nature00785 Masoumifard, N., Guillet-Nicolas, R., Kleitz, F.: Synthesis of engineered zeolitic materials: from classical zeolites to hierarchical core-shell materials. Adv. Mater. 30, 1704439 (2018). https://doi.org/10.1002/adma.201704439 Guzman, J., Gates, B.C.: Supported molecular catalysts: metal complexes and clusters on oxides and zeolites. Dalton Trans. 17, 3303–3318 (2003). https://doi.org/10.1039/b303285j Zhang, W.J., Jiang, P.P., Wang, Y., et al.: Bottom-up approach to engineer a molybdenum-doped covalent-organic framework catalyst for selective oxidation reaction. RSC Adv. 4, 51544–51547 (2014). https://doi.org/10.1039/c4ra09304f Zhong, W.F., Sa, R.J., Li, L.Y., et al.: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 141, 7615–7621 (2019). https://doi.org/10.1021/jacs.9b02997 Huang, N., Wang, P., Jiang, D.L.: Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016). https://doi.org/10.1038/natrevmats.2016.68 Ramalingam, V., Varadhan, P., Fu, H.C., et al.: Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31, 1903841 (2019). https://doi.org/10.1002/adma.201903841 Fu, Q., Li, W.X., Yao, Y.X., et al.: Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010). https://doi.org/10.1126/science.1188267 Côté, A.P., Benin, A.I., Ockwig, N.W., et al.: Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). https://doi.org/10.1126/science.1120411 Zhang, J.Q., Zhao, Y.F., Guo, X., et al.: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1 Peng, Y., Lu, B.Z., Chen, S.W.: Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30, 1801995 (2018). https://doi.org/10.1002/adma.201801995 Jiao, L., Jiang, H.L.: Metal–organic-framework-based single-atom catalysts for energy applications. Chem 5, 786–804 (2019). https://doi.org/10.1016/j.chempr.2018.12.011 Liao, T., Kou, L.Z., Du, A.J., et al.: Simplest MOF units for effective photodriven hydrogen evolution reaction. J. Am. Chem. Soc. 140, 9159–9166 (2018). https://doi.org/10.1021/jacs.8b04599 Sun, X.P., Sun, S.X., Gu, S.Q., et al.: High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 61, 245–250 (2019). https://doi.org/10.1016/j.nanoen.2019.04.076 Hou, C.C., Wang, H.F., Li, C.X., et al.: From metal–organic frameworks to single/dual–atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 13, 1658–1693 (2020). https://doi.org/10.1039/c9ee04040d Yang, L.M., Zeng, Y.C., Tang, X.J., et al.: Self-sacrificial template synthesis of a nitrogen-doped microstructured carbon tube as electrocatalyst for oxygen reduction. ChemElectroChem 5, 3731–3740 (2018). https://doi.org/10.1002/celc.201801050 Xiao, F., Xu, G.L., Sun, C.J., et al.: Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 61, 60–68 (2019). https://doi.org/10.1016/j.nanoen.2019.04.033 Ji, S.F., Chen, Y.J., Zhao, S., et al.: Atomically dispersed ruthenium species inside metal–organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. Int. Ed. 58, 4271–4275 (2019). https://doi.org/10.1002/anie.201814182 Jiang, R., Li, L., Sheng, T., et al.: Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140, 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294 Park, K.S., Ni, Z., Côté, A.P., et al.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103, 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103 Xiao, M.L., Zhu, J.B., Li, G.R., et al.: A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem. Int. Ed. 58, 9640–9645 (2019). https://doi.org/10.1002/anie.201905241 Wang, X.J., Zhang, H.G., Lin, H.H., et al.: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe–N–C catalysts for oxygen reduction in acid. Nano Energy 25, 110–119 (2016). https://doi.org/10.1016/j.nanoen.2016.04.042 Merzougui, B., Hachimi, A., Akinpelu, A., et al.: A Pt-free catalyst for oxygen reduction reaction based on Fe–N multiwalled carbon nanotube composites. Electrochim. Acta 107, 126–132 (2013). https://doi.org/10.1016/j.electacta.2013.06.016 Zhang, H.G., Hwang, S., Wang, M.Y., et al.: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139, 14143–14149 (2017). https://doi.org/10.1021/jacs.7b06514 Han, A.J., Wang, B.Q., Kumar, A., et al.: Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 3, 1800471 (2019). https://doi.org/10.1002/smtd.201800471 Xuan, N.N., Chen, J.H., Shi, J.J., et al.: Single-atom electroplating on two dimensional materials. Chem. Mater. 31, 429–435 (2019). https://doi.org/10.1021/acs.chemmater.8b03796 Su, X., Yang, X.F., Huang, Y.Q., et al.: Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 52, 656–664 (2019). https://doi.org/10.1021/acs.accounts.8b00478 Pan, Y., Lin, R., Chen, Y.J., et al.: Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814 Chen, L.W., Wu, Z.Y., Nan, H., et al.: A metal-catalyzed thermal polymerization strategy toward atomically dispersed catalysts. Chem. Commun. 55, 11579–11582 (2019). https://doi.org/10.1039/c9cc05975j Zhang, M.L., Wang, Y.G., Chen, W.X., et al.: Metal (hydr)oxides@polymer core–shell strategy to metal single-atom materials. J. Am. Chem. Soc. 139, 10976–10979 (2017). https://doi.org/10.1021/jacs.7b05372 Li, J., Liu, P., Tang, Y.Z., et al.: Single-atom Pt-N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal. 10, 2431–2442 (2020). https://doi.org/10.1021/acscatal.9b04925 Ren, Z., Liu, Y., Lyu, Y., et al.: Single-atom Rh based bipyridine framework porous organic polymer: a high active and superb stable catalyst for heterogeneous methanol carbonylation. J. Catal. 369, 249–256 (2019). https://doi.org/10.1016/j.jcat.2018.11.015 Wang, D.H., Ao, C.C., Liu, X.K., et al.: Coordination-engineered Cu-Nx single-site catalyst for enhancing oxygen reduction reaction. ACS Appl. Energy Mater. 2, 6497–6504 (2019). https://doi.org/10.1021/acsaem.9b01066 Yang, H.P., Wu, Y., Li, G.D., et al.: Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141, 12717–12723 (2019). https://doi.org/10.1021/jacs.9b04907 Qin, R.X., Liu, P.X., Fu, G., et al.: Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1700286 (2018). https://doi.org/10.1002/smtd.201700286 Chen, L.F., Yang, T., Cui, H., et al.: A porous metal–organic cage constructed from dirhodium paddle-wheels: synthesis, structure and catalysis. J. Mater. Chem. A 3, 20201–20209 (2015). https://doi.org/10.1039/c5ta05592j Kou, Z.K., Zang, W.J., Ma, Y.Y., et al.: Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: from isolated atoms to clusters and nanoparticles. Nano Energy 67, 104288 (2020). https://doi.org/10.1016/j.nanoen.2019.104288 Zhang, H.J., Kawashima, K., Okumura, M., et al.: Colloidal Au single-atom catalysts embedded on Pd nanoclusters. J. Mater. Chem. A 2, 13498–13508 (2014). https://doi.org/10.1039/c4ta01696c Shi, Z.S., Yang, W.Q., Gu, Y.T., et al.: Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv. Sci. 7, 2001069 (2020). https://doi.org/10.1002/advs.202001069 Wang, J., Liao, T., Wei, Z.Z., et al.: Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 5, 2000988 (2021). https://doi.org/10.1002/smtd.202000988 Xi, J.B., Jung, H.S., Xu, Y., et al.: Single-atom catalysts: synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater. 31, 2170081 (2021). https://doi.org/10.1002/adfm.202170081 Zhao, H.Y., Zhang, C.X., Li, H., et al.: One-dimensional nanomaterial supported metal single-atom electrocatalysts: synthesis, characterization, and applications. Nano Sel. 2, 2072–2111 (2021). https://doi.org/10.1002/nano.202100083 Calle-Vallejo, F., Koper, M.T.M.: Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013). https://doi.org/10.1002/anie.201301470 Schouten, K.J.P., Qin, Z.S., Pérez Gallent, E., et al.: Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012). https://doi.org/10.1021/ja302668n Vijay, S., Ju, W., Brückner, S., et al.: Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021). https://doi.org/10.1038/s41929-021-00705-y