Advanced Glycation End Products

Ovid Technologies (Wolters Kluwer Health) - Tập 114 Số 6 - Trang 597-605 - 2006
Alison Goldin1, Joshua A. Beckman1, Ann Marie Schmidt1, Mark A. Creager1
1From the Cardiovascular Division (A.G., J.A.B., M.A.C.), Brigham and Women’s Hospital and Harvard Medical School, Boston, Mass, and Columbia University Medical Center (A.M.S.), New York, NY.

Tóm tắt

Advanced glycation end products (AGEs) are proteins or lipids that become glycated after exposure to sugars. AGEs are prevalent in the diabetic vasculature and contribute to the development of atherosclerosis. The presence and accumulation of AGEs in many different cell types affect extracellular and intracellular structure and function. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Activation of RAGE by AGEs causes upregulation of the transcription factor nuclear factor-κB and its target genes. Soluble AGEs activate monocytes, and AGEs in the basement membrane inhibit monocyte migration. AGE-bound RAGE increases endothelial permeability to macromolecules. AGEs block nitric oxide activity in the endothelium and cause the production of reactive oxygen species. Because of the emerging evidence about the adverse effects of AGEs on the vasculature of patients with diabetes, a number of different therapies to inhibit AGEs are under investigation.

Từ khóa


Tài liệu tham khảo

10.1161/atv91.14.10.7918300

10.1007/s001250051591

10.2337/diab.34.9.938

10.1038/nm1095-1002

10.1146/annurev.med.46.1.223

10.1007/BF03345377

10.1016/j.lfs.2004.09.011

10.1161/res.84.5.489

10.1073/pnas.91.19.8807

10.2337/diab.43.5.676

10.1016/0022-2836(88)90015-0

10.2337/diabetes.48.1.1

10.1681/ASN.V104822

10.1016/S0021-9258(18)31635-1

10.1074/jbc.273.30.18714

10.1016/S0021-9258(19)89188-3

10.1016/S0008-6363(00)00262-5

10.1016/S0021-9150(99)00396-2

10.1016/0003-9861(92)90146-N

10.1016/S0021-9258(18)42137-0

10.1016/S0021-9258(18)42138-2

10.1006/geno.1994.1517

10.1074/jbc.272.26.16498

10.1161/01.res.0000103862.26506.3d

10.1074/jbc.274.44.31740

10.1172/JCI200114002

10.1016/S0968-0004(96)80167-8

10.1016/S0021-9258(17)36965-X

10.1016/S1043-2760(00)00311-8

10.1126/science.1411574

10.1172/JCI116481

10.2337/diacare.28.10.2465

10.1111/j.1749-6632.1997.tb51994.x

10.1007/s00018-002-8491-x

10.1084/jem.174.3.515

10.1016/0092-8674(92)90118-V

10.1002/dmrr.233

10.1074/jbc.271.10.5832

10.1073/pnas.93.20.11047

10.1007/BF03401604

10.1093/jb/mvi071

10.1196/annals.1333.076

10.1074/jbc.M011613200

10.1007/s00726-003-0029-5

10.1016/S0014-5793(01)03325-7

10.1006/bbrc.2001.5674

10.1074/jbc.M210211200

10.1172/JCI118175

Hammes HP, Weiss A, Hess S, Araki N, Horiuchi S, Brownlee M, Preissner KT. Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina. Lab Invest. 1996; 75: 325–338.

10.1006/excr.1996.0308

10.1016/S0021-9258(18)42287-9

10.1073/pnas.95.3.1301

10.1161/circ.104.13.1464

10.1093/ndt/11.supp5.76

10.1093/ndt/11.supp5.62

10.1038/ki.1995.274

10.1159/000045093

10.1016/S0021-9258(18)68925-2

10.1016/S0021-9258(20)88225-8

10.2337/diab.39.7.807

10.1016/S1357-2725(99)00023-0

10.2337/diab.38.1.130

10.1073/pnas.91.20.9441

10.2337/diabetes.48.6.1331

10.1055/s-2007-1002089

10.1016/S0092-8674(00)80801-6

10.1172/JCI115014

10.1172/JCI115928

10.1021/bi00406a016

10.1172/JCI117296

10.1161/circ.96.7.2262

10.1016/S0021-9258(17)36966-1

10.2337/diabetes.52.3.621

10.1074/jbc.274.28.19919

10.1038/35012626

10.1016/S0014-5793(99)00731-0

10.1016/j.cardiores.2004.05.001

10.1172/JCI656

10.2337/diab.41.2.S26

10.1084/jem.170.4.1387

10.1006/bbrc.2000.3685

10.1042/bst025250s

10.1016/S0021-9150(97)00221-9

10.1016/S0168-8227(99)00094-7

10.1074/jbc.272.28.17810

10.1111/j.1523-1755.2000.00340.x

10.1089/ars.2005.7.1053

10.2337/diacare.25.6.1055

10.1161/res.86.3.e50

10.1096/fj.02-0490fje

10.2337/diabetes.47.6.945

10.1007/s001250051089

10.2337/diabetes.49.9.1561

10.1152/ajpendo.2001.280.5.E685

10.2337/diabetes.50.12.2792

10.1161/circ.105.7.816

10.1073/pnas.91.16.7742

10.2337/diabetes.53.11.2921

10.2337/diabetes.53.7.1813

10.2337/diabetes.51.11.3283

10.1159/000075627

10.1007/s001250051587

10.1161/01.res.0000069362.52165.c9

10.1097/00004872-200208000-00024

10.1161/01.res.0000065620.39919.20

10.1097/01.hco.0000127135.73849.4f

10.1073/pnas.040558497

10.1146/annurev.bi.65.070196.001325

10.1096/fj.02-0030fje

10.1097/01.ASN.0000032418.67267.F2

10.2337/diabetes.51.11.3274

10.1172/JCI118397

10.1038/2012

10.1161/01.cir.0000039325.03698.36

10.1016/S0002-9440(10)61723-3

10.1161/01.atv.0000133191.71196.90

10.1016/S0021-9258(18)71972-8

10.1021/ja01218a013

Braunstein AE, Shemyakin MM. Theory of processes of amino acid metabolism that are catalyzed by pyridoxal enzymes. Dokl Akad Nauk SSSR. 1952; 85: 1115–1118.

10.1021/ja01632a004

10.1074/jbc.M307155200

10.1046/j.1523-1755.2002.00207.x

10.2337/diabetes.51.9.2826

Alderson NL, Chachich ME, Frizzell N, Canning P, Metz TO, Januszewski AS, Youssef NN, Stitt AW, Baynes JW, Thorpe SR. Effect of antioxidants and ACE inhibition on chemical modification of proteins and progression of nephropathy in the streptozotocin diabetic rat. Diabetologia. 2004; 47: 1385–1395.

10.1046/j.1523-1755.2003.00027.x

10.2337/diabetes.52.1.187

10.1038/nm834

10.1007/s005920170010

10.1073/pnas.94.12.6474

10.1073/pnas.242407999

10.1016/j.jada.2004.05.214

10.1161/01.cir.0000135587.92455.0d

10.1097/01.ASN.0000051593.41395.B9