Advanced Biotechnology for Cell Cryopreservation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ballen K (2010) Challenges in umbilical cord blood stem cell banking for stem cell reviews and reports. Stem Cell Rev Rep 6(1):8–14
Chang A, Kim Y, Hoehn R et al (2016) Cryopreserved packed red blood cells in surgical patients: past, present, and future. Blood Transfus 15(4):341–347
Yang J, Pan C, Zhang JM et al (2017) Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl Mater Interfaces 9(49):42516–42524
Gurruchaga H, Saenz del Burgo L, Hernandez RM et al (2018) Advances in the slow freezing cryopreservation of microencapsulated cells. J Control Release 281:119–138
Fuller B, Gonzalez-Molina J, Erro E et al (2017) Applications and optimization of cryopreservation technologies to cellular therapeutics. Cell Gene Therapy Insights 3(5):359–378
Pal R, Mamidi MK, Das AK et al (2012) Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch Toxicol 86(4):651–661
Shu Z, Heimfeld S, Gao D (2014) Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant 49(4):469–476
Elliott GD, Wang SP, Fuller BJ (2017) Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76:74–91
Best BP (2015) Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res 18(5):422–436
Lauterboeck L, Wolkers WF, Glasmacher B (2017) Cryobiological parameters of multipotent stromal cells obtained from different sources. Cryobiology 74:93–102
Pollock K, Budenske JW, McKenna DH et al (2017) Algorithm-driven optimization of cryopreservation protocols for transfusion model cell types including Jurkat cells and mesenchymal stem cells. J Tissue Eng Regen Med 11(10):2806–2815
Mahler S, Desille M, Frémond B et al (2003) Hypothermic storage and cryopreservation of hepatocytes: the protective effect of alginate gel against cell damages. Cell Transplant 12(6):579–592
Chinnadurai R, Copland IB, Garcia MA et al (2016) Cryopreserved mesenchymal stromal cells are susceptible to T-cell mediated apoptosis which is partly rescued by IFNγ licensing. Stem Cells 34(9):2429–2442
Moll G, Alm JJ, Davies LC et al (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells 32(9):2430–2442
Shaik S, Wu XY, Gimble J et al (2018) Effects of decade long freezing storage on adipose derived stem cells functionality. Sci Rep 8:8162
Zhou QQ, Zhang YL, Zhao M et al (2016) Mature dendritic cell derived from cryopreserved immature dendritic cell shows impaired homing ability and reduced anti-Viral therapeutic effects. Sci Rep 6:39071
Sui XJ, Wen CY, Yang J et al (2019) Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal. ACS Biomater Sci Eng 5(2):1083–1091
Yang J, Cai NN, Zhai HW et al (2016) Natural zwitterionic betaine enables cells to survive ultrarapid cryopreservation. Sci Rep 6:37458
Cao TT, Zhang YQ (2017) The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 49(6):1029–1039
Kim SM, Yun CK, Park JH et al (2017) Efficient cryopreservation of human mesenchymal stem cells using silkworm hemolymph-derived proteins. J Tissue Eng Regen Med 11(8):2181–2192
Tsai S, Chong G, Meng PJ et al (2018) Sugars as supplemental cryoprotectants for marine organisms. Rev Aquac 10:703–715
Cottone G (2007) A comparative study of carboxy myoglobin in saccharide–water systems by molecular dynamics simulation. J Phys Chem B 111(13):3563–3569
He XM, Fowler A, Toner M (2006) Water activity and mobility in solutions of glycerol and small molecular weight sugars: implication for cryo- and lyopreservation. J Appl Phys 100(7):074702
Sun WQ, Leopold AC, Crowe LM et al (1996) Stability of dry liposomes in sugar glasses. Biophys J 70(4):1769–1776
Chen FF, Zhang WJ, Wu W et al (2011) Cryopreservation of tissue-engineered epithelial sheets in trehalose. Biomaterials 32(33):8426–8435
Ntai A, La Spada A, de Blasio P et al (2018) Trehalose to cryopreserve human pluripotent stem cells. Stem Cell Res 31:102–112
Shinde P, Khan N, Melinkeri S et al (2019) Freezing of dendritic cells with trehalose as an additive in the conventional freezing medium results in improved recovery after cryopreservation. Transfusion 59(2):686–696
Stewart S, He XM (2019) Intracellular delivery of trehalose for cell banking. Langmuir 35(23):7414–7422
Gläfke C, Akhoondi M, Oldenhof H et al (2012) Cryopreservation of platelets using trehalose: the role of membrane phase behavior during freezing. Biotechnol Progress 28(5):1347–1354
Zhang M, Oldenhof H, Sieme H et al (2016) Combining endocytic and freezing-induced trehalose uptake for cryopreservation of mammalian cells. Cryobiology 73(3):412
Zhang M, Oldenhof H, Sieme H et al (2016) Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. Biochimica Et Biophys Acta Bba Biomembr 1858(6):1400–1409
Dovgan B, Barlič A, Knežević M et al (2017) Cryopreservation of human adipose-derived stem cells in combination with trehalose and reversible electroporation. J Membrane Biol 250(1):1–9
Dovgan B, Dermol J, Barlič A et al (2016) Cryopreservation of human umbilical stem cells in combination with trehalose and reversible electroporation. 1st World congress on electroporation and pulsed electric fields in biology, medicine and food & environmental technologies. Springer, Singapore, pp 307–310
Shirakashi R, Köstner CM, Müller KJ et al (2002) Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol 189(1):45–54
Beattie GM, Crowe JH, Lopez AD et al (1997) Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 46(3):519–523
Batista Napotnik T, Miklavčič D (2018) In vitro electroporation detection methods—an overview. Bioelectrochemistry 120:166–182
Cao YH, Ma EB, Cestellos-Blanco S et al (2019) Reply to Nathamgari et al. Nanopore electroporation for intracellular delivery of biological macromolecules. Proc Natl Acad Sci USA 116(46):22911
Rems L, Miklavčič D (2016) Tutorial: electroporation of cells in complex materials and tissue. J Appl Phys 119(20):201101
Šatkauskas S, Ruzgys P, Venslauskas MS (2012) Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation. Expert Opin Biol Ther 12(3):275–286
Yao CG, Liu HM, Zhao YJ et al (2017) Analysis of dynamic processes in single-cell electroporation and their effects on parameter selection based on the finite-element model. IEEE Trans Plasma Sci 45(5):889–900
Lynch AL, Chen RJ, Slater NKH (2011) PH-responsive polymers for trehalose loading and desiccation protection of human red blood cells. Biomaterials 32(19):4443–4449
Mercado SA, Slater NKH (2016) Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake. Cryobiology 73(2):175–180
Lynch AL, Chen RJ, Dominowski PJ et al (2010) Biopolymer mediated trehalose uptake for enhanced erythrocyte cryosurvival. Biomaterials 31(23):6096–6103
Acker JP, Lu XM, Young V et al (2003) Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore. Biotechnol Bioeng 82(5):525–532
Buchanan SS, Gross SA, Acker JP et al (2004) Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev 13(3):295–305
Eroglu A, Russo MJ, Bieganski R et al (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18(2):163–167
Rao W, Huang HS, Wang H et al (2015) Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl Mater Interfaces 7(8):5017–5028
Stefanic M, Ward K, Tawfik H et al (2017) Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 140:138–149
Zhang WJ, Rong JH, Wang Q et al (2009) The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule. Nanotechnology 20(27):275101
Russo MJ, Bayley H, Toner M (1997) Reversible permeabilization of plasma membranes with an engineered switchable pore. Nat Biotechnol 15(3):278–282
Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3(4):567–578
Vernekar VN, James R, Smith KJ et al (2016) Nanotechnology applications in stem cell science for regenerative engineering. J Nanosci Nanotechnol 16(9):8953–8965
Watermann A, Brieger J (2017) Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials 7(7):189
Qian HQ, Liu BR, Jiang XQ (2018) Application of nanomaterials in cancer immunotherapy. Mater Today Chem 7:53–64
Orive G, Hernández RM, Gascón AR et al (2003) Cell encapsulation: promise and progress. Nat Med 9(1):104–107
Zimmermann H, Ehrhart F, Zimmermann D et al (2007) Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications. Appl Phys A 89(4):909–922
Kang A, Park J, Ju J et al (2014) Cell encapsulation via microtechnologies. Biomaterials 35(9):2651–2663
Zhang W, He X (2011) Microencapsulating and banking living cells for cell-based medicine. J Healthc Eng 2(4):427–446
Huang HS, He XM (2016) Microscale materials and devices for cell cryopreservation by vitrification. Multiscale Technologies for Cryomedicine, World Scientific, Singapore, pp 101–124
Dluska E, Cui ZF, Markowska-Radomska A et al (2017) Cryoprotection and banking of living cells in a 3D multiple emulsion-based carrier. Biotechnol J 12(8):1600692
Majewski RL, Zhang WJ, Ma XJ et al (2016) Bioencapsulation technologies in tissue engineering. J Appl Biomater Funct Mater 14(4):e395–e403
Rabanel JM, Banquy X, Zouaoui H et al (2009) Progress technology in microencapsulation methods for cell therapy. Biotechnol Prog 25(4):946–963
Chopra P, Nayak D, Nanda A et al (2016) Fabrication of poly(vinyl alcohol)-carrageenan scaffolds for cryopreservation: effect of composition on cell viability. Carbohydr Polym 147:509–516
Vrana NE, Matsumura K, Hyon SH et al (2011) Cell encapsulation and cryostorage in PVA–gelatin cryogels: incorporation of carboxylated ε-poly-l-lysine as cryoprotectant. J Tissue Eng Regen Med 6(4):280–290
Vrana NE, O’Grady A, Kay E et al (2009) Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med 3(7):567–572
Zeng J, Yin YX, Zhang L et al (2016) A supramolecular gel approach to minimize the neural cell damage during cryopreservation process. Macromol Biosci 16(3):363–370
Jain M, Rajan R, Hyon SH et al (2014) Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry. Biomater Sci 2(3):308–317
Popa EG, Rodrigues MT, Coutinho DF et al (2013) Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft Matter 9(3):875–885
Wolters GHJ, Fritschy WM, Gerrits D et al (1992) A versatile alginate droplet generator applicable for microencapsulation of pancreatic islets. J Appl Biomater 3(4):281–286
Malpique R, Osório LM, Ferreira DS et al (2010) Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tissue Eng Part C Methods 16(5):965–977
Zhang WJ, He XM (2009) Encapsulation of living cells in small (~ 100 μm) alginate microcapsules by electrostatic spraying: a parametric study. J Biomech Eng 131(7):074515
Zhang WJ, Yang GE, Zhang AL et al (2010) Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed Microdevices 12(1):89–96
Zhao ST, Agarwal P, Rao W et al (2014) Coaxial electrospray of liquid core–hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells. Integr Biol 6(9):874–884
Lu YC, Fu DJ, An D et al (2017) Scalable production and cryostorage of organoids using core-shell decoupled hydrogel capsules. Adv Biosyst 1(12):1700165
Naqvi SM, Gansau J, Buckley CT (2018) Priming and cryopreservation of microencapsulated marrow stromal cells as a strategy for intervertebral disc regeneration. Biomed Mater 13(3):034106
Kashaninejad N, Shiddiky MJA, Nguyen NT (2018) Advances in microfluidics-based assisted reproductive technology: from sperm sorter to reproductive system-on-a-chip. Adv Biosyst 2(3):1700197
Chen WY, Shu ZQ, Gao DY et al (2016) Sensing and sensibility: single-islet-based quality control assay of cryopreserved pancreatic islets with functionalized hydrogel microcapsules. Adv Healthcare Mater 5(2):223–231
Huang HS, Choi JK, Rao W et al (2015) Alginate hydrogel microencapsulation inhibits devitrification and enables large-volume low-CPA cell vitrification. Adv Funct Mater 25(44):6839–6850
Zhao G, Liu XL, Zhu KX et al (2017) Hydrogel encapsulation facilitates rapid-cooling cryopreservation of stem cell-laden core-shell microcapsules as cell-biomaterial constructs. Adv Healthcare Mater 6(23):1700988
Nir R, Lamed R, Gueta L et al (1990) Single-cell entrapment and microcolony development within uniform microspheres amenable to flow cytometry. Appl Environ Microbiol 56:2870–2875
Perçin G, Yaralioglu GG, Khuri-Yakub BT (2002) Micromachined droplet ejector arrays. Rev Sci Instrum 73(12):4385–4389
Demirci U (2006) Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology. J Microelectromech Syst 15(4):957–966
Reis N, Ainsley C, Derby B (2005) Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J Appl Phys 97(9):094903
de Vries RJ, Banik PD, Nagpal S et al (2019) Bulk droplet vitrification: an approach to improve large-scale hepatocyte cryopreservation outcome. Langmuir 35(23):7354–7363
Youn JR, Song YS (2012) Cell-encapsulating droplet formation and freezing. Appl Phys Lett 101(13):133701
El Assal R, Guven S, Gurkan UA et al (2014) Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Adv Mater 26(33):5815–5822
Shi M, Ling K, Yong KW et al (2015) High-throughput non-contact vitrification of cell-laden droplets based on cell printing. Sci Rep 5:17928
Akiyama Y, Shinose M, Watanabe H et al (2019) Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc Natl Acad Sci USA 116(16):7738–7743
Deller RC, Pessin JE, Vatish M et al (2016) Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers. Biomater Sci 4(7):1079–1084
Manuchehrabadi N, Gao Z, Zhang JJ et al (2017) Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med 9(379):eaah4586
Etheridge ML, Xu Y, Rott L et al (2014) RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology 2(3):229–242
Wang T, Zhao G, Deng ZS et al (2015) Theoretical investigation of a novel microwave antenna aided cryovial for rapid and uniform rewarming of frozen cryoprotective agent solutions. Appl Therm Eng 89:968–977
Liu XL, Zhao G, Chen ZR et al (2018) Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell–Alginate hydrogel constructs. ACS Appl Mater Interfaces 10(19):16822–16835
Pan JJ, Shu ZQ, Zhao G et al (2018) Towards uniform and fast rewarming for cryopreservation with electromagnetic resonance cavity: numerical simulation and experimental investigation. Appl Therm Eng 140:787–798
Khosla K, Wang YR, Hagedorn M et al (2017) Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano 11(8):7869–7878
Wang JY, Zhao G, Zhang ZL et al (2016) Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification. Acta Biomater 33:264–274
Khosla K, Zhan L, Bhati A et al (2019) Characterization of laser gold nanowarming: a platform for millimeter-scale cryopreservation. Langmuir 35(23):7364–7375
Panhwar F, Chen ZR, Hossain SMC et al (2018) Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures. Nanoscale 10(25):11760–11774
Swioklo S, Constantinescu A, Connon CJ (2016) Alginate-encapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem Cells Transl Med 5(3):339–349
Swioklo S, Ding P, Pacek AW et al (2017) Process parameters for the high-scale production of alginate-encapsulated stem cells for storage and distribution throughout the cell therapy supply chain. Process Biochem 59:289–296
Bissoyi A, Nayak B, Pramanik K et al (2014) Targeting cryopreservation-induced cell death: a review. Biopreservation Biobanking 12(1):23–34