Advanced Biotechnology for Cell Cryopreservation

Jing Yang1, Lei Gao1, Min Liu1, Xiaojie Sui1, Yingnan Zhu2, Chiyu Wen1, Lei Zhang1
1Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
2Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China

Tóm tắt

AbstractCell cryopreservation has evolved as an important technology required for supporting various cell-based applications, such as stem cell therapy, tissue engineering, and assisted reproduction. Recent times have witnessed an increase in the clinical demand of these applications, requiring urgent improvements in cell cryopreservation. However, cryopreservation technology suffers from the issues of low cryopreservation efficiency and cryoprotectant (CPA) toxicity. Application of advanced biotechnology tools can significantly improve post-thaw cell survival and reduce or even eliminate the use of organic solvent CPAs, thus promoting the development of cryopreservation. Herein, based on the different cryopreservation mechanisms available, we provide an overview of the applications and achievements of various biotechnology tools used in cell cryopreservation, including trehalose delivery, hydrogel-based cell encapsulation technique, droplet-based cell printing, and nanowarming, and also discuss the associated challenges and perspectives for future development.

Từ khóa


Tài liệu tham khảo

Zhao G, Fu JP (2017) Microfluidics for cryopreservation. Biotechnol Adv 35(2):323–336

Ballen K (2010) Challenges in umbilical cord blood stem cell banking for stem cell reviews and reports. Stem Cell Rev Rep 6(1):8–14

Chang A, Kim Y, Hoehn R et al (2016) Cryopreserved packed red blood cells in surgical patients: past, present, and future. Blood Transfus 15(4):341–347

Yang J, Pan C, Zhang JM et al (2017) Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl Mater Interfaces 9(49):42516–42524

Gurruchaga H, Saenz del Burgo L, Hernandez RM et al (2018) Advances in the slow freezing cryopreservation of microencapsulated cells. J Control Release 281:119–138

Fuller B, Gonzalez-Molina J, Erro E et al (2017) Applications and optimization of cryopreservation technologies to cellular therapeutics. Cell Gene Therapy Insights 3(5):359–378

Pal R, Mamidi MK, Das AK et al (2012) Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch Toxicol 86(4):651–661

Shu Z, Heimfeld S, Gao D (2014) Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant 49(4):469–476

Elliott GD, Wang SP, Fuller BJ (2017) Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76:74–91

Best BP (2015) Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res 18(5):422–436

Lauterboeck L, Wolkers WF, Glasmacher B (2017) Cryobiological parameters of multipotent stromal cells obtained from different sources. Cryobiology 74:93–102

Pollock K, Budenske JW, McKenna DH et al (2017) Algorithm-driven optimization of cryopreservation protocols for transfusion model cell types including Jurkat cells and mesenchymal stem cells. J Tissue Eng Regen Med 11(10):2806–2815

Mahler S, Desille M, Frémond B et al (2003) Hypothermic storage and cryopreservation of hepatocytes: the protective effect of alginate gel against cell damages. Cell Transplant 12(6):579–592

Chinnadurai R, Copland IB, Garcia MA et al (2016) Cryopreserved mesenchymal stromal cells are susceptible to T-cell mediated apoptosis which is partly rescued by IFNγ licensing. Stem Cells 34(9):2429–2442

Moll G, Alm JJ, Davies LC et al (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells 32(9):2430–2442

Shaik S, Wu XY, Gimble J et al (2018) Effects of decade long freezing storage on adipose derived stem cells functionality. Sci Rep 8:8162

Zhou QQ, Zhang YL, Zhao M et al (2016) Mature dendritic cell derived from cryopreserved immature dendritic cell shows impaired homing ability and reduced anti-Viral therapeutic effects. Sci Rep 6:39071

Sui XJ, Wen CY, Yang J et al (2019) Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal. ACS Biomater Sci Eng 5(2):1083–1091

Yang J, Cai NN, Zhai HW et al (2016) Natural zwitterionic betaine enables cells to survive ultrarapid cryopreservation. Sci Rep 6:37458

Cao TT, Zhang YQ (2017) The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 49(6):1029–1039

Kim SM, Yun CK, Park JH et al (2017) Efficient cryopreservation of human mesenchymal stem cells using silkworm hemolymph-derived proteins. J Tissue Eng Regen Med 11(8):2181–2192

Tsai S, Chong G, Meng PJ et al (2018) Sugars as supplemental cryoprotectants for marine organisms. Rev Aquac 10:703–715

Cottone G (2007) A comparative study of carboxy myoglobin in saccharide–water systems by molecular dynamics simulation. J Phys Chem B 111(13):3563–3569

He XM, Fowler A, Toner M (2006) Water activity and mobility in solutions of glycerol and small molecular weight sugars: implication for cryo- and lyopreservation. J Appl Phys 100(7):074702

Sun WQ, Leopold AC, Crowe LM et al (1996) Stability of dry liposomes in sugar glasses. Biophys J 70(4):1769–1776

Chen FF, Zhang WJ, Wu W et al (2011) Cryopreservation of tissue-engineered epithelial sheets in trehalose. Biomaterials 32(33):8426–8435

Ntai A, La Spada A, de Blasio P et al (2018) Trehalose to cryopreserve human pluripotent stem cells. Stem Cell Res 31:102–112

Shinde P, Khan N, Melinkeri S et al (2019) Freezing of dendritic cells with trehalose as an additive in the conventional freezing medium results in improved recovery after cryopreservation. Transfusion 59(2):686–696

Stewart S, He XM (2019) Intracellular delivery of trehalose for cell banking. Langmuir 35(23):7414–7422

Gläfke C, Akhoondi M, Oldenhof H et al (2012) Cryopreservation of platelets using trehalose: the role of membrane phase behavior during freezing. Biotechnol Progress 28(5):1347–1354

Zhang M, Oldenhof H, Sieme H et al (2016) Combining endocytic and freezing-induced trehalose uptake for cryopreservation of mammalian cells. Cryobiology 73(3):412

Zhang M, Oldenhof H, Sieme H et al (2016) Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. Biochimica Et Biophys Acta Bba Biomembr 1858(6):1400–1409

Dovgan B, Barlič A, Knežević M et al (2017) Cryopreservation of human adipose-derived stem cells in combination with trehalose and reversible electroporation. J Membrane Biol 250(1):1–9

Dovgan B, Dermol J, Barlič A et al (2016) Cryopreservation of human umbilical stem cells in combination with trehalose and reversible electroporation. 1st World congress on electroporation and pulsed electric fields in biology, medicine and food & environmental technologies. Springer, Singapore, pp 307–310

Shirakashi R, Köstner CM, Müller KJ et al (2002) Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol 189(1):45–54

Beattie GM, Crowe JH, Lopez AD et al (1997) Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 46(3):519–523

Batista Napotnik T, Miklavčič D (2018) In vitro electroporation detection methods—an overview. Bioelectrochemistry 120:166–182

Cao YH, Ma EB, Cestellos-Blanco S et al (2019) Reply to Nathamgari et al. Nanopore electroporation for intracellular delivery of biological macromolecules. Proc Natl Acad Sci USA 116(46):22911

Rems L, Miklavčič D (2016) Tutorial: electroporation of cells in complex materials and tissue. J Appl Phys 119(20):201101

Šatkauskas S, Ruzgys P, Venslauskas MS (2012) Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation. Expert Opin Biol Ther 12(3):275–286

Yao CG, Liu HM, Zhao YJ et al (2017) Analysis of dynamic processes in single-cell electroporation and their effects on parameter selection based on the finite-element model. IEEE Trans Plasma Sci 45(5):889–900

Lynch AL, Chen RJ, Slater NKH (2011) PH-responsive polymers for trehalose loading and desiccation protection of human red blood cells. Biomaterials 32(19):4443–4449

Mercado SA, Slater NKH (2016) Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake. Cryobiology 73(2):175–180

Lynch AL, Chen RJ, Dominowski PJ et al (2010) Biopolymer mediated trehalose uptake for enhanced erythrocyte cryosurvival. Biomaterials 31(23):6096–6103

Acker JP, Lu XM, Young V et al (2003) Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore. Biotechnol Bioeng 82(5):525–532

Buchanan SS, Gross SA, Acker JP et al (2004) Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev 13(3):295–305

Eroglu A, Russo MJ, Bieganski R et al (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18(2):163–167

Rao W, Huang HS, Wang H et al (2015) Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl Mater Interfaces 7(8):5017–5028

Stefanic M, Ward K, Tawfik H et al (2017) Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 140:138–149

Zhang WJ, Rong JH, Wang Q et al (2009) The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule. Nanotechnology 20(27):275101

Russo MJ, Bayley H, Toner M (1997) Reversible permeabilization of plasma membranes with an engineered switchable pore. Nat Biotechnol 15(3):278–282

Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3(4):567–578

Vernekar VN, James R, Smith KJ et al (2016) Nanotechnology applications in stem cell science for regenerative engineering. J Nanosci Nanotechnol 16(9):8953–8965

Watermann A, Brieger J (2017) Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials 7(7):189

Qian HQ, Liu BR, Jiang XQ (2018) Application of nanomaterials in cancer immunotherapy. Mater Today Chem 7:53–64

Orive G, Hernández RM, Gascón AR et al (2003) Cell encapsulation: promise and progress. Nat Med 9(1):104–107

Zimmermann H, Ehrhart F, Zimmermann D et al (2007) Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications. Appl Phys A 89(4):909–922

Kang A, Park J, Ju J et al (2014) Cell encapsulation via microtechnologies. Biomaterials 35(9):2651–2663

Zhang W, He X (2011) Microencapsulating and banking living cells for cell-based medicine. J Healthc Eng 2(4):427–446

Huang HS, He XM (2016) Microscale materials and devices for cell cryopreservation by vitrification. Multiscale Technologies for Cryomedicine, World Scientific, Singapore, pp 101–124

Dluska E, Cui ZF, Markowska-Radomska A et al (2017) Cryoprotection and banking of living cells in a 3D multiple emulsion-based carrier. Biotechnol J 12(8):1600692

Majewski RL, Zhang WJ, Ma XJ et al (2016) Bioencapsulation technologies in tissue engineering. J Appl Biomater Funct Mater 14(4):e395–e403

Rabanel JM, Banquy X, Zouaoui H et al (2009) Progress technology in microencapsulation methods for cell therapy. Biotechnol Prog 25(4):946–963

Chopra P, Nayak D, Nanda A et al (2016) Fabrication of poly(vinyl alcohol)-carrageenan scaffolds for cryopreservation: effect of composition on cell viability. Carbohydr Polym 147:509–516

Vrana NE, Matsumura K, Hyon SH et al (2011) Cell encapsulation and cryostorage in PVA–gelatin cryogels: incorporation of carboxylated ε-poly-l-lysine as cryoprotectant. J Tissue Eng Regen Med 6(4):280–290

Vrana NE, O’Grady A, Kay E et al (2009) Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med 3(7):567–572

Zeng J, Yin YX, Zhang L et al (2016) A supramolecular gel approach to minimize the neural cell damage during cryopreservation process. Macromol Biosci 16(3):363–370

Jain M, Rajan R, Hyon SH et al (2014) Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry. Biomater Sci 2(3):308–317

Popa EG, Rodrigues MT, Coutinho DF et al (2013) Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft Matter 9(3):875–885

Wolters GHJ, Fritschy WM, Gerrits D et al (1992) A versatile alginate droplet generator applicable for microencapsulation of pancreatic islets. J Appl Biomater 3(4):281–286

Malpique R, Osório LM, Ferreira DS et al (2010) Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tissue Eng Part C Methods 16(5):965–977

Zhang WJ, He XM (2009) Encapsulation of living cells in small (~ 100 μm) alginate microcapsules by electrostatic spraying: a parametric study. J Biomech Eng 131(7):074515

Zhang WJ, Yang GE, Zhang AL et al (2010) Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed Microdevices 12(1):89–96

Zhao ST, Agarwal P, Rao W et al (2014) Coaxial electrospray of liquid core–hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells. Integr Biol 6(9):874–884

Lu YC, Fu DJ, An D et al (2017) Scalable production and cryostorage of organoids using core-shell decoupled hydrogel capsules. Adv Biosyst 1(12):1700165

Naqvi SM, Gansau J, Buckley CT (2018) Priming and cryopreservation of microencapsulated marrow stromal cells as a strategy for intervertebral disc regeneration. Biomed Mater 13(3):034106

Kashaninejad N, Shiddiky MJA, Nguyen NT (2018) Advances in microfluidics-based assisted reproductive technology: from sperm sorter to reproductive system-on-a-chip. Adv Biosyst 2(3):1700197

Chen WY, Shu ZQ, Gao DY et al (2016) Sensing and sensibility: single-islet-based quality control assay of cryopreserved pancreatic islets with functionalized hydrogel microcapsules. Adv Healthcare Mater 5(2):223–231

Huang HS, Choi JK, Rao W et al (2015) Alginate hydrogel microencapsulation inhibits devitrification and enables large-volume low-CPA cell vitrification. Adv Funct Mater 25(44):6839–6850

Zhao G, Liu XL, Zhu KX et al (2017) Hydrogel encapsulation facilitates rapid-cooling cryopreservation of stem cell-laden core-shell microcapsules as cell-biomaterial constructs. Adv Healthcare Mater 6(23):1700988

Nir R, Lamed R, Gueta L et al (1990) Single-cell entrapment and microcolony development within uniform microspheres amenable to flow cytometry. Appl Environ Microbiol 56:2870–2875

Perçin G, Yaralioglu GG, Khuri-Yakub BT (2002) Micromachined droplet ejector arrays. Rev Sci Instrum 73(12):4385–4389

Blossey R (2003) Self-cleaning surfaces: virtual realities. Nat Mater 2(5):301–306

Demirci U (2006) Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology. J Microelectromech Syst 15(4):957–966

Reis N, Ainsley C, Derby B (2005) Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J Appl Phys 97(9):094903

de Vries RJ, Banik PD, Nagpal S et al (2019) Bulk droplet vitrification: an approach to improve large-scale hepatocyte cryopreservation outcome. Langmuir 35(23):7354–7363

Youn JR, Song YS (2012) Cell-encapsulating droplet formation and freezing. Appl Phys Lett 101(13):133701

Demirci U, Montesano G (2007) Cell encapsulating droplet vitrification. Lab Chip 7(11):1428

El Assal R, Guven S, Gurkan UA et al (2014) Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Adv Mater 26(33):5815–5822

Shi M, Ling K, Yong KW et al (2015) High-throughput non-contact vitrification of cell-laden droplets based on cell printing. Sci Rep 5:17928

Akiyama Y, Shinose M, Watanabe H et al (2019) Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc Natl Acad Sci USA 116(16):7738–7743

Deller RC, Pessin JE, Vatish M et al (2016) Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers. Biomater Sci 4(7):1079–1084

Manuchehrabadi N, Gao Z, Zhang JJ et al (2017) Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med 9(379):eaah4586

Czajka C (2017) Nanowarming improves cryopreservation. Science 355(6328):920–921

Etheridge ML, Xu Y, Rott L et al (2014) RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology 2(3):229–242

Wang T, Zhao G, Deng ZS et al (2015) Theoretical investigation of a novel microwave antenna aided cryovial for rapid and uniform rewarming of frozen cryoprotective agent solutions. Appl Therm Eng 89:968–977

Liu XL, Zhao G, Chen ZR et al (2018) Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell–Alginate hydrogel constructs. ACS Appl Mater Interfaces 10(19):16822–16835

Pan JJ, Shu ZQ, Zhao G et al (2018) Towards uniform and fast rewarming for cryopreservation with electromagnetic resonance cavity: numerical simulation and experimental investigation. Appl Therm Eng 140:787–798

Khosla K, Wang YR, Hagedorn M et al (2017) Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano 11(8):7869–7878

Wang JY, Zhao G, Zhang ZL et al (2016) Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification. Acta Biomater 33:264–274

Khosla K, Zhan L, Bhati A et al (2019) Characterization of laser gold nanowarming: a platform for millimeter-scale cryopreservation. Langmuir 35(23):7364–7375

Panhwar F, Chen ZR, Hossain SMC et al (2018) Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures. Nanoscale 10(25):11760–11774

Swioklo S, Constantinescu A, Connon CJ (2016) Alginate-encapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem Cells Transl Med 5(3):339–349

Swioklo S, Ding P, Pacek AW et al (2017) Process parameters for the high-scale production of alginate-encapsulated stem cells for storage and distribution throughout the cell therapy supply chain. Process Biochem 59:289–296

Bissoyi A, Nayak B, Pramanik K et al (2014) Targeting cryopreservation-induced cell death: a review. Biopreservation Biobanking 12(1):23–34

Baust JG, Snyder KK, van Buskirk R et al (2017) Integrating molecular control to improve cryopreservation outcome. Biopreservation Biobanking 15(2):134–141