Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density

Advanced Functional Materials - Tập 22 Số 12 - Trang 2632-2641 - 2012
Jun Yan1, Zhuangjun Fan1, Wei Sun1, Guoqing Ning2, Tong Wei1, Qiang Zhang3, Fei Wei3, Linjie Zhi4, Fei Wei3
1Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P.R. China
2State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P, .R. China
3Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
4National Center for Nanoscience and Technology of China, Zhongguancun, Beiyitiao 11, Beijing 100190, P. R. China

Tóm tắt

Abstract

Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost‐effective microwave‐assisted method. In order to achieve high energy and power densities, a high‐voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high‐voltage region of 0–1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g−1 and high energy density of 77.8 Wh kg−1. Furthermore, the Ni(OH)2/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems.

Từ khóa


Tài liệu tham khảo

10.1021/ja102267j

10.1002/adfm.200900971

10.1002/adfm.201100058

10.1021/nl104205s

10.1002/adma.201003658

10.1007/978-1-4757-3058-6

10.1038/nmat2297

10.1002/adma.200903328

10.1021/nn101754k

10.1002/adma.200904349

10.1016/j.jpowsour.2010.06.013

10.1016/j.jpowsour.2004.03.021

10.1021/nn100856y

10.1007/s12274-011-0129-6

10.1016/j.matlet.2006.05.026

10.1021/cm702207w

10.1111/j.1551-2916.2010.04090.x

10.1016/j.matlet.2003.09.054

10.1016/j.matchemphys.2007.06.015

10.1002/anie.200460053

10.1002/1521-4095(20020903)14:17<1216::AID-ADMA1216>3.0.CO;2-A

10.1016/j.carbon.2011.02.068

10.1039/c1cc11566a

10.1021/nl010003p

10.1016/j.carbon.2009.09.066

10.1016/0013-4686(95)00282-J

10.1016/j.carbon.2008.08.013

10.1039/c0cc04906a

10.1039/c0jm03830j

10.1039/b902221j

10.1038/nnano.2009.58

10.1002/adma.201001029

10.1126/science.1200770

10.1039/c1cc11159k

10.1007/s10008-009-0984-1

10.1108/03699420910973314

10.1149/1.1559067

10.1016/j.jpowsour.2005.03.210

10.1016/j.jpowsour.2006.07.060

10.1016/j.jpowsour.2008.08.032

10.1021/nl101723g

10.1016/j.jpowsour.2010.03.093

10.1016/j.jpowsour.2005.10.090

10.1149/1.3236500

10.1039/c000339e

10.1016/j.matchemphys.2009.04.028

10.1016/j.synthmet.2008.09.005

10.1149/1.2140678

10.1016/j.jpowsour.2007.04.074

10.1016/j.jpowsour.2010.01.041

10.1002/anie.200702721

10.1016/j.jpowsour.2009.10.108

10.1016/j.jpowsour.2010.01.006

10.1016/j.jpowsour.2009.06.068

10.1016/j.elecom.2009.05.003

10.1002/adma.200901775

10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G

10.1149/1.2437665

10.1021/nl8038579

10.1016/j.jpowsour.2009.12.018

10.1016/j.jpowsour.2009.11.059