Adsorption technology for CO2 separation and capture: a perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beaver, M.G., Sircar, S.: Adsorption technology for direct recovery of compressed, pure CO2 from a flue gas without pre-compression or pre-drying. Adsorption 16, 103–111 (2010). doi: 10.1007/s10450-010-9219-0
Bhown, A.S.A.S., Freeman, B.C.B.C.: Analysis and status of post-combustion carbon dioxide capture technologies. Environ. Sci. Technol. 45, 8624–8632 (2011). doi: 10.1021/es104291d
Bosoaga, A., Masek, O., Oakey, J.E.: CO2 capture technologies for cement industry. Energy Procedia 1, 133–140 (2009). doi: 10.1016/j.egypro.2009.01.020
Casas, N., Schell, J., Joss, L., Mazzotti, M.: A parametric study of a PSA process for pre-combustion CO2 capture. Sep. Purif. Technol. 104, 183–192 (2013). doi: 10.1016/j.seppur.2012.11.018
Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009). doi: 10.1002/cssc.200900036
Colburn, A.P., Dodge, B.F.: Adsorption process for removal of carbon dioxide from the atmosphere of a submarine. USA Patent 2545194 (1951)
Collins, J.J.: Bulk Separation of carbon dioxide from natural gas. USA Patent 3751878 (1973)
Ebner, A.D., Ritter, Ja: State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep. Sci. Technol. 44, 1273–1421 (2009). doi: 10.1080/01496390902733314
Grande, C., Rodrigues, A.E.: Electric swing adsorption for CO2 removal from flue gases. Int. J. Greenhouse Gas Control 2, 194–202 (2007a). doi: 10.1016/S1750-5836(07)00116-8
Grande, C.A., Ribeiro, R.P.P.L., Rodrigues, A.E.: CO2 capture from NGCC power stations using electric swing adsorption (ESA). Energy Fuels 23, 2797–2803 (2009). doi: 10.1021/ef8010756
Grande, C.A., Rodrigues, A.E.: Layered vacuum pressure-swing adsorption for biogas upgrading. Ind. Eng. Chem. Res. 46, 7844–7848 (2007b). doi: 10.1021/ie070942d
Haghpanah, R., Nilam, R., Rajendran, A., Farooq, S., Karimi, I.A.: Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture. AIChE J. 00, n/a–n/a (2013). doi: 10.1002/aic.14192
Haraoka, T., Mogi, Y., Saima, H.: PSA system for the recovery of carbon dioxide from blast furnace gas in steel works the influence of operation conditions on CO2 separation. Kagaku Kogaku Ronbunshu 39, 439–444 (2013). doi: 10.1252/kakoronbunshu.39.439
Ishibashi, M., Ota, H., Akutsu, N., Umeda, S., Tajika, M., Izumi, J., Yasutake, A., Kabata, T., Kageyama, Y.: Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy Convers. Manag. 37, 929–933 (1996)
Li, G., Xiao, P., Xu, D., Webley, Pa: Dual mode roll-up effect in multicomponent non-isothermal adsorption processes with multilayered bed packing. Chem. Eng. Sci. 66, 1825–1834 (2011). doi: 10.1016/j.ces.2011.01.023
Liu, W., An, H., Qin, C., Yin, J., Wang, G., Feng, B., Xu, M.: Performance enhancement of calcium oxide sorbents for cyclic CO2 capture—a review. Energy Fuels 26, 2751–2767 (2012a)
Liu, Z., Wang, L., Kong, X., Li, P., Yu, J., Rodrigues, A.E.: Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Ind. Eng. Chem. Res. 51, 7355–7363 (2012b). doi: 10.1021/ie3005308
Lively, R.P., Chance, R.R., Kelley, B.T., Deckman, H.W., Drese, J.H., Jones, C.W., Koros, W.J.: Hollow fiber adsorbents for CO2 removal from flue gas. Ind. Eng. Chem. Res. 48, 7314–7324 (2009). doi: 10.1021/ie9005244
Maring, B., Webley, P.A.: A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenhouse Gas Control 15, 16–31 (2013)
Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Thomas, E.M.: Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5, 7281–7305 (2012). doi: 10.1039/c2ee03403d
Murakami, Y., Lijima, A., Ward, J.W.: New Developments in Zeolite Science and Technology. In: 7th International Zeolite Conference, Tokyo 1986. Studies in Surface Science and Catalysis. Elsevier Science Ltd
Oexmann, J., Kather, A., Linnenberg, S., Liebenthal, U.: Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants. Greenhouse Gases Sci. Technol. 98, 80–98 (2012). doi: 10.1002/ghg.1273
Qader, A., Hooper, B., Stevens, G., Kentish, S., Webley, P.: Demonstrating carbon capture. Chem. Eng. 821, 30–31 (2009)
Rao, V.R., Krishnamurthy, S., Guntuka, S.K., Rajendran, A., Ullah, M.A., Sharratt, P., Karimi, I.A., Farooq, S.: A pilot plant study of a VSA process for CO2 capture from power plant flue gas. Paper presented at the AIChE Annual Meeting, Pittsburgh, PA, USA (2012)
Rubin, E.S., Mantripragada, H., Marks, A., Versteeg, P., Kitchin, J.: The outlook for improved carbon capture technology. Prog. Energy Combust. Sci. 38, 630–671 (2012). doi: 10.1016/j.pecs.2012.03.003
SaskPower: Boundary Dam Integrated Carbon Capture and Storage Demonstration Project. http://www.saskpower.com/our-power-future/work-currently-underway/boundary-dam-integrated-carbon-capture-and-storage-demonstration-project/ (2013)
Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K.M., Bastow, T.J., Medhekar, N., Doherty, C.M., Hill, A.J., Liu, J.Z., Webley, P.A.: Discriminative Separation of Gases by a “Molecular Trapdoor” Mechanism in Chabazite Zeolites. J. Am. Chem. Soc. 134, 19246–19253 (2012). doi: http://dx.doi.org/10.1021/ja309274y
Sjostrom, S., Krutka, H., Starns, T., Campbell, T.: Pilot test results of post-combustion CO2 capture using solid sorbents. Energy Procedia 4, 1584–1592 (2011). doi: 10.1016/j.egypro.2011.02.028
Spoorthi, G., Thakur, R.S., Kaistha, N., Rao, D.P.: Process intensification in PSA processes for upgrading synthetic landfill and lean natural gases. Adsorption 17, 121–133 (2010). doi: 10.1007/s10450-010-9302-6
Takeguchi, T., Tanakulrungsank, W., Inui, T.: Separation and/or concentration of CO2 from CO2/N2 gaseous mixture by pressure swing adsorption using metal-incorporated microporous crystals with high surface area. Gas Sep. Purif. 7, 3–9 (1993). doi: 10.1016/0950-4214(93)85013-L
Tlili, N., Grévillot, G., Vallières, C.: Carbon dioxide capture and recovery by means of TSA and/or VSA. Int. J. Greenhouse Gas Control 3, 519–527 (2009). doi: 10.1016/j.ijggc.2009.04.005
van Selow, E.R., Cobden, P.D., van den Brink, R.W., Hufton, J.R., Wright, A.: Performance of sorption-enhanced water-gas shift as a pre-combustion CO2 capture technology. Energy Procedia 1, 689–696 (2009). doi: 10.1016/j.egypro.2009.01.091
Voss, C.: Applications of pressure swing adsorption technology. Adsorption 11, 527–529 (2005). doi: 10.1007/s10450-005-5979-3
Wang, L., Yang, Y., Shen, W., Kong, X., Li, P., Yu, J., Rodrigues, A.E.: CO2 capture from flue gas in an existing coal-fired power plant by pilot-scale two successive VPSA units. Ind. Eng. Chem. Res. 130514043648000 (2013). doi: 10.1021/ie4009716
Wang, M., Lawal, a, Stephenson, P., Sidders, J., Ramshaw, C.: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89, 1609–1624 (2011). doi: 10.1016/j.cherd.2010.11.005
Wright, A., White, V., Hufton, J., Selow, E.V., Hinderink, P.: Reduction in the cost of pre-combustion CO2 capture through advancements in sorption-enhanced water-gas-shift. Energy Procedia 1, 707–714 (2009). doi: 10.1016/j.egypro.2009.01.093
Xiao, G., Xiao, P., Lee, S., Webley, P.A.: CO2 capture at elevated temperatures by cyclic adsorption processes. RSC Advances 2, 5291–5297 (2012). doi: 10.1039/c2ra20174g
Xu, D., Xiao, P., Zhang, J., Li, G., Xiao, G., Webley, P.A., Zhai, Y.: Effects of water vapor on CO2 capture with vacuum swing adsorption using activated carbon. Chem. Eng. J. 230, 64–72 (2013)
Zhao, A., Samanta, A., Sarkar, P., Gupta, R.: Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. Ind. Eng. Chem. Res. 52, 6480–6491 (2013a). doi: 10.1021/ie3030533
Zhao, C., Chen, X., Anthony, E.J., Jiang, X., Duan, L., Wu, Y., Dong, W., Zhao, C.: Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog. Energy Combust. Sci. (2013b). doi: 10.1016/j.pecs.2013.05.001