Adsorption of small gas molecules on strained monolayer WSe2 doped with Pd, Ag, Au, and Pt: A computational investigation
Tài liệu tham khảo
Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975
Zhao, 2014, Air stable p-doping of WSe2 by covalent functionalization, ACS Nano, 8, 10808, 10.1021/nn5047844
Fang, 2012, High-performance single layered WSe2 p-FETs with chemically doped contacts, Nano Lett., 12, 3788, 10.1021/nl301702r
Xia, 2016, Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides, J. Semicond., 37, 10.1088/1674-4926/37/5/051001
Ando, 1982, Electronic properties of two-dimensional systems, Rev. Mod. Phys., 54, 437, 10.1103/RevModPhys.54.437
Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Mak, 2010, Atomically thin MoS₂: a new direct-gap semiconductor., Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.136805
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
He, 2014, Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B, 89, 520, 10.1103/PhysRevB.89.075409
Tan, 2015, Two-dimensional transition metal dichalcogenide nanosheet-based composites, Chem. Soc. Rev., 44, 2713, 10.1039/C4CS00182F
Kaneti, 2014, Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies, Phys. Chem. Chem. Phys., 16, 11471, 10.1039/C4CP01279H
Zhang, 2015, A facile synthesis and characterization of graphene-like WS2 nanosheets, Mater. Lett., 159, 399, 10.1016/j.matlet.2015.07.044
Vovusha, 2019, Sensitivity enhancement of stanene towards toxic SO2 and H2S, Appl. Surf. Sci., 495, 10.1016/j.apsusc.2019.143622
Panigrahi, 2019, Elemental substitution of two-dimensional transition metal dichalcogenides (MoSe2 and MoTe2): Implications for enhanced gas sensing, ACS Sens., 4, 2646, 10.1021/acssensors.9b01044
Manzeli, 2017, 2D transition metal dichalcogenides, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.33
Wang, 2016, High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer, Adv. Mater., 28, 8302, 10.1002/adma.201602757
Lee, 2012, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320, 10.1002/adma.201104798
Das, 2014, Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides, ACS Nano, 8, 1681, 10.1021/nn406603h
Perkins, 2013, Chemical vapor sensing with mono layer MoS2, Nano Lett., 13, 668, 10.1021/nl3043079
Hussain, 2019, Efficient and selective sensing of nitrogen-containing gases by Si2BN nanosheets under pristine and pre-oxidized conditions, Appl. Surf. Sci., 469, 775, 10.1016/j.apsusc.2018.11.020
Chen, 2016, Chemical vapor deposition of high-quality large-sized MoS2, crystals on silicon dioxide substrates, Adv. Sci., 3, 10.1002/advs.201600033
Chemical vapor deposition synthesized atomically-thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9) (2015) 150809133519004.
Ji, 2013, Epitaxial monolayer MoS2 on mica with novel photoluminescence, Nano Lett., 13, 3870, 10.1021/nl401938t
Kumar, 2013, Semiconductor to metal transition in bilayer transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te), Modell. Simul. Mater. Sci. Eng., 21, 10.1088/0965-0393/21/6/065015
Qiao, 2018, Structural characterization of corn stover lignin after hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment, Energy Fuels, 32, 6022, 10.1021/acs.energyfuels.8b00951
Song, 2017, Progress of large-scale synthesis and electronic device application of two-dimensional transition metal dichalcogenides, Small, 13, 1700098, 10.1002/smll.201700098
Franklin, 2015, Nanomaterials in transistors: From high-performance to thin-film applications, Science, 349, 10.1126/science.aab2750
Li, 2016, Metallic impurities induced electronic transport in WSe2: First-principle calculations, Chem. Phys. Lett., 658, 83, 10.1016/j.cplett.2016.06.030
Ma, 2017, Interaction between H2O, N2, CO, NO, NO2 and N2O molecules and a defective WSe2 monolayer, Phys. Chem. Chem. Phys., 19, 10.1039/C7CP04351A
Gil, 2014, An ab initio study of transition metals doped with WSe2 for long-range room temperature ferromagnetism in two-dimensional transition metal dichalcogenide, J. Phys.: Condens. Matter., 26, 306004
Chen, 2019, Dissolved gas analysis in transformer oil using Pt-doped WSe 2 monolayer based on first principles method, IEEE Access, 7, 72012, 10.1109/ACCESS.2019.2917705
Zhao, 2017, First-principles study of nonmetal doped monolayer MoSe 2 for tunable electronic and photocatalytic properties, Sci. Rep., 7, 10.1038/s41598-017-17423-w
Delley, 1990, An all-electron numerical-method for solving the local density functional for polyatomic-molecules, J. Chem. Phys., 92, 508, 10.1063/1.458452
Delley, 2000, From molecules to solids with the DMol(3) approach, J. Chem. Phys., 113, 7756, 10.1063/1.1316015
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Becke, 1993, A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys., 98, 1372, 10.1063/1.464304
Lawson, 2019, First-principles analysis of structural stability, electronic and phonon transport properties of lateral MoS2-WX2 heterostructures, Comput. Condens. Matter, 19, 10.1016/j.cocom.2019.e00389
Zhao, 2013, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2, ACS Nano, 7, 791, 10.1021/nn305275h
Zhang, 2009, Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study, Nanotechnology, 20, 10.1088/0957-4484/20/18/185504
Kokalj, 2013, Formation and structure of inhibitive molecular film of imidazole on iron surface, Corros. Sci., 68, 195, 10.1016/j.corsci.2012.11.015
Weigelt, 2007, Covalent interlinking of an aldehyde and an amine on a Au (111) surface in ultrahigh vacuum, Angew. Chem. Int. Ed., 46, 9227, 10.1002/anie.200702859
Henkelman, 2000, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys., 113, 9901, 10.1063/1.1329672