Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: Adsorption and kinetic studies

Microchemical Journal - Tập 145 - Trang 105-112 - 2019
Manisha Sharma1, Jasminder Singh2, S. Hazra3, Soumen Basu2
1Division of Chemistry, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
2School of Chemistry and Biochemistry, Thapar University, Patiala, Punjab 147004, India
3Saha Institute of Nuclear Physics, Kolkata 700064, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gupta, 2009, Low-cost adsorbents: growing approach to wastewater treatment—a review, Crit. Rev. Environ. Sci. Technol., 39, 783, 10.1080/10643380801977610

Zhang, 2016, High adsorption capability and selectivity of ZnO nanoparticles for dye removal, Colloids Surf. A Physicochem. Eng. Asp., 509, 474, 10.1016/j.colsurfa.2016.09.059

Gupta, 2012, Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chem. Eng. J., 180, 81, 10.1016/j.cej.2011.11.006

Dong, 2010, Simultaneous adsorption of lead and cadmium on MnO2-loaded resin, J. Environ. Sci., 22, 225, 10.1016/S1001-0742(09)60097-8

Ahluwalia, 2005, Removal of heavy metals by waste tea leaves from aqueous solution, Eng. Life Sci., 5, 158, 10.1002/elsc.200420066

Hosseini, 2011, Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: adsorption and desorption studies, Chem. Eng. J., 171, 1124, 10.1016/j.cej.2011.05.010

Saleh, 2012, Column with CNT/magnesium oxide composite for lead(II) removal from water, Environ. Sci. Pollut. Res. Int., 19, 1224, 10.1007/s11356-011-0670-6

Xin, 2012, Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles, Chem. Eng. J., 184, 132, 10.1016/j.cej.2012.01.016

Sun, 2011, Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins, Chem. Mater., 23, 2176, 10.1021/cm103704s

Cai, 2016, Enhanced photoelectrochemical activity of ZnO-coated TiO2 nanotubes and its dependence on ZnO coating thickness, Nanoscale Res. Lett., 11, 104, 10.1186/s11671-016-1309-9

Hernandez, 2014, Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination, ACS Appl. Mater. Interfaces, 6, 12153, 10.1021/am501379m

Momeni, 2015, Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes, J. Appl. Electrochem., 45, 557, 10.1007/s10800-015-0836-x

Lei, 2009, Fabrication, characterization, and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes, J. Phys. Chem. C, 113, 19067, 10.1021/jp9071179

Sharma, 2017, Variation of surface area of silica monoliths by controlling ionic character/chain length of surfactants and polymers, Mater. Lett., 194, 213, 10.1016/j.matlet.2017.02.074

Gomes, 2011, Annealed Ti/Zn-TiO2 nanocomposites tested as photoanodes for the degradation of Ibuprofen, J. Solid State Electrochem., 16, 2061, 10.1007/s10008-011-1608-0

Awual, 2018, Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials, Chem. Eng. J., 343, 118, 10.1016/j.cej.2018.02.116

Sharma, 2017, Effect of surfactants on the structure and adsorption efficiency of hydroxyapatite nanorods, J. Nanosci. Nanotechnol., 17, 1

Feng, 2009, Adsorption study of copper (II) by chemically modified orange peel, J. Hazard. Mater., 164, 1286, 10.1016/j.jhazmat.2008.09.096

Sharma, 2018, Effect of surfactants on the structure and adsorption efficiency of hydroxyapatite nanorods, J. Nanosci. Nanotechnol., 18, 623, 10.1166/jnn.2018.13948

2015

Ho, 2006, Review of second-order models for adsorption systems, J. Hazard. Mater., 136, 681, 10.1016/j.jhazmat.2005.12.043

Azarudeen, 2015, Heavy and toxic metal ion removal by a novel polymeric ion-exchanger: synthesis, characterization, kinetics and equilibrium studies, J. Chem. Technol. Biotechnol., 90, 2170, 10.1002/jctb.4528

Athar, 2013, Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies, Appl Water Sci, 3, 665, 10.1007/s13201-013-0115-0

Butt, 2003

Watson, 1999

Rajput, 2017, Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (gamma-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP), J. Colloid Interface Sci., 492, 176, 10.1016/j.jcis.2016.11.095

Sharma, 2017, Effective removal of metal ions from aqueous solution by mesoporous MnO2 and TiO2 monoliths: kinetic and equilibrium modelling, J. Alloys Compd., 720, 221, 10.1016/j.jallcom.2017.05.260

Teoh, 2013, Kinetic and isotherm studies for lead adsorption from aqueous phase on carbon coated monolith, Chem. Eng. J., 217, 248, 10.1016/j.cej.2012.12.013

Asuquo, 2017, Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: equilibrium, kinetics and characterisation studies, J. Environ. Chem. Eng., 5, 679, 10.1016/j.jece.2016.12.043

Saeed, 2008, Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption, J. Membr. Sci., 322, 400, 10.1016/j.memsci.2008.05.062

Singh, 2018, Heavy metal ions adsorption and photodegradation of remazol black XP by iron oxide/silica monoliths: kinetic and equilibrium modelling, Adv. Powder Technol., 29, 2268, 10.1016/j.apt.2018.06.011

Sharma, 2018, Remediation of heavy metal ions using hierarchically porous carbon monolith synthesized via nanocasting method, J. Environ. Chem. Eng., 6, 2829, 10.1016/j.jece.2018.04.042

Lei, 2017, Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions, J. Hazard. Mater., 321, 801, 10.1016/j.jhazmat.2016.09.070

Hu, 2008, Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal, Adv. Mater., 20, 2977, 10.1002/adma.200800623