Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: Adsorption and kinetic studies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gupta, 2009, Low-cost adsorbents: growing approach to wastewater treatment—a review, Crit. Rev. Environ. Sci. Technol., 39, 783, 10.1080/10643380801977610
Zhang, 2016, High adsorption capability and selectivity of ZnO nanoparticles for dye removal, Colloids Surf. A Physicochem. Eng. Asp., 509, 474, 10.1016/j.colsurfa.2016.09.059
Gupta, 2012, Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chem. Eng. J., 180, 81, 10.1016/j.cej.2011.11.006
Dong, 2010, Simultaneous adsorption of lead and cadmium on MnO2-loaded resin, J. Environ. Sci., 22, 225, 10.1016/S1001-0742(09)60097-8
Ahluwalia, 2005, Removal of heavy metals by waste tea leaves from aqueous solution, Eng. Life Sci., 5, 158, 10.1002/elsc.200420066
Hosseini, 2011, Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: adsorption and desorption studies, Chem. Eng. J., 171, 1124, 10.1016/j.cej.2011.05.010
Saleh, 2012, Column with CNT/magnesium oxide composite for lead(II) removal from water, Environ. Sci. Pollut. Res. Int., 19, 1224, 10.1007/s11356-011-0670-6
Xin, 2012, Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles, Chem. Eng. J., 184, 132, 10.1016/j.cej.2012.01.016
Sun, 2011, Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins, Chem. Mater., 23, 2176, 10.1021/cm103704s
Cai, 2016, Enhanced photoelectrochemical activity of ZnO-coated TiO2 nanotubes and its dependence on ZnO coating thickness, Nanoscale Res. Lett., 11, 104, 10.1186/s11671-016-1309-9
Hernandez, 2014, Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination, ACS Appl. Mater. Interfaces, 6, 12153, 10.1021/am501379m
Momeni, 2015, Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes, J. Appl. Electrochem., 45, 557, 10.1007/s10800-015-0836-x
Lei, 2009, Fabrication, characterization, and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes, J. Phys. Chem. C, 113, 19067, 10.1021/jp9071179
Sharma, 2017, Variation of surface area of silica monoliths by controlling ionic character/chain length of surfactants and polymers, Mater. Lett., 194, 213, 10.1016/j.matlet.2017.02.074
Gomes, 2011, Annealed Ti/Zn-TiO2 nanocomposites tested as photoanodes for the degradation of Ibuprofen, J. Solid State Electrochem., 16, 2061, 10.1007/s10008-011-1608-0
Awual, 2018, Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials, Chem. Eng. J., 343, 118, 10.1016/j.cej.2018.02.116
Sharma, 2017, Effect of surfactants on the structure and adsorption efficiency of hydroxyapatite nanorods, J. Nanosci. Nanotechnol., 17, 1
Feng, 2009, Adsorption study of copper (II) by chemically modified orange peel, J. Hazard. Mater., 164, 1286, 10.1016/j.jhazmat.2008.09.096
Sharma, 2018, Effect of surfactants on the structure and adsorption efficiency of hydroxyapatite nanorods, J. Nanosci. Nanotechnol., 18, 623, 10.1166/jnn.2018.13948
2015
Ho, 2006, Review of second-order models for adsorption systems, J. Hazard. Mater., 136, 681, 10.1016/j.jhazmat.2005.12.043
Azarudeen, 2015, Heavy and toxic metal ion removal by a novel polymeric ion-exchanger: synthesis, characterization, kinetics and equilibrium studies, J. Chem. Technol. Biotechnol., 90, 2170, 10.1002/jctb.4528
Athar, 2013, Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies, Appl Water Sci, 3, 665, 10.1007/s13201-013-0115-0
Butt, 2003
Watson, 1999
Rajput, 2017, Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (gamma-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP), J. Colloid Interface Sci., 492, 176, 10.1016/j.jcis.2016.11.095
Sharma, 2017, Effective removal of metal ions from aqueous solution by mesoporous MnO2 and TiO2 monoliths: kinetic and equilibrium modelling, J. Alloys Compd., 720, 221, 10.1016/j.jallcom.2017.05.260
Teoh, 2013, Kinetic and isotherm studies for lead adsorption from aqueous phase on carbon coated monolith, Chem. Eng. J., 217, 248, 10.1016/j.cej.2012.12.013
Asuquo, 2017, Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: equilibrium, kinetics and characterisation studies, J. Environ. Chem. Eng., 5, 679, 10.1016/j.jece.2016.12.043
Saeed, 2008, Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption, J. Membr. Sci., 322, 400, 10.1016/j.memsci.2008.05.062
Singh, 2018, Heavy metal ions adsorption and photodegradation of remazol black XP by iron oxide/silica monoliths: kinetic and equilibrium modelling, Adv. Powder Technol., 29, 2268, 10.1016/j.apt.2018.06.011
Sharma, 2018, Remediation of heavy metal ions using hierarchically porous carbon monolith synthesized via nanocasting method, J. Environ. Chem. Eng., 6, 2829, 10.1016/j.jece.2018.04.042
Lei, 2017, Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions, J. Hazard. Mater., 321, 801, 10.1016/j.jhazmat.2016.09.070