Adsorption of arsenic on iron modified attapulgite (Fe/ATP): surface complexation model and DFT studies
Tóm tắt
The adsorption behaviors of arsenic As(V) on the iron modified attapulgite (Fe/ATP) were studied. Two types of Fe/ATP nanoparticles, including Fe(III)/ATP and Fe(II,III)/ATP were prepared by ultrasonic co-precipitation method and characterized using SEM, XRD, XPS, FT-IR and zeta potential analyses. The adsorption isotherms of As(V) on Fe/ATP were well fitted by Freundlich model. The adsorption kinetics data were followed by the pseudo-second-order model with the pseud-second-order rate constant (k, min−1) of − 0.033 for Fe(III)/ATP and − 0.037 for Fe(II,III)/ATP, respectively. Adsorption capacities of Fe/ATP were 5–6 times higher than ATP (5.2 mg g‒1). The Fe–O(H) groups on Fe/ATP contributed to the strong interaction for As(V), confirmed with FT-IR and XPS analyses. The higher adsorption capacity of Fe(III)/ATP than that of Fe(II,III)/ATP was attributed to more surface hydroxyl groups on Fe(III)/ATP. Surface complexation models and density functional theory calculations demonstrated that As(V) sorption on Fe/ATP was by virtue of the formation of monodentate complexes.
Tài liệu tham khảo
Angele Ngantcha-Kwimi, T., Reed, B.E.: As(V) and PO4 removal by an iron-impregnated activated carbon in a single and binary adsorbate system: experimental and surface complexation modeling results. J. Environ. Eng. 142(1), 04015046 (2016). https://doi.org/10.1061/(asce)ee.1943-7870.0000989
Bhattacharyya, K.G., Gupta, S.S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interfaces 140(2), 114–131 (2008). https://doi.org/10.1016/j.cis.2007.12.008
Bhaumik, M., Noubactep, C., Gupta, V.K., McCrindle, R.I., Maity, A.: Polyaniline/Fe0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions. Chem. Eng. J. 271(1), 135–146 (2015). https://doi.org/10.1016/j.cej.2015.02.079
Biswas, A., Gustafsson, J.P., Neidhardt, H., Halder, D., Kundu, A.K., Chatterjee, D., Berner, Z., Bhattacharya, P.: Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res. 55, 30–39 (2014). https://doi.org/10.1016/j.watres.2014.02.002
Blanchard, M., Morin, G., Lazzeri, M., Balan, E., Dabo, I.: First-principles simulation of arsenate adsorption on the (1 1¯ 2) surface of hematite. Geochim. Cosmochim. Acta 86(86), 182–195 (2012). https://doi.org/10.1016/j.gca.2012.03.013
Burns, R.G.: Mineral Mössbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters. Hyperfine Interact. 91(1), 739–745 (1994). https://doi.org/10.1007/bf02064600
Cihanoğlu, A., Gündüz, G., Dükkancı, M.: Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites. Appl. Catal. B 165, 687–699 (2015). https://doi.org/10.1016/j.apcatb.2014.10.073
Dixit, S., Hering, J.G.: Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37(18), 4182–4189 (2003). https://doi.org/10.1021/es030309t
Elwakeel, K.Z., Guibal, E.: Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents. Carbohydr. Polym. 134(10), 190–204 (2015). https://doi.org/10.1016/j.carbpol.2015.07.012
Fan, Q., Shao, D., Lu, Y., Wu, W., Wang, X.: Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na–attapulgite. Chem. Eng. J. 150(1), 188–195 (2009a). https://doi.org/10.1016/j.cej.2008.12.024
Fan, Q., Tan, X., Li, J., Wang, X., Wu, W., Montavon, G.: Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ. Sci. Technol. 43(15), 5776–5782 (2009b). https://doi.org/10.1021/es901241f
Fernández, A.M., Sánchez-Ledesma, D.M., Gutiérrez-Nebot, L., Martínez, J.J., Romero, C., Labajo, M., Melón, A., Barrios, I.: Comprehensive characterization of palygorskite from Torrejón el Rubio (Spain) based on experimental techniques and theoretical DFT studies In: Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT). (2014). http://documenta.ciemat.es/handle/123456789/101
Giménez, J., Martínez, M., de Pablo, J., Rovira, M., Duro, L.: Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 141(3), 575–580 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.020
Goffinet, C.J., Mason, S.E.: Comparative DFT study of inner-sphere As(III) complexes on hydrated α-Fe2O3(0001) surface models. J. Environ. Monit. 14(7), 1860–1871 (2012). https://doi.org/10.1039/c2em30355h
Goldberg, S.: Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 66(2), 413–421 (2002). https://doi.org/10.2136/sssaj2002.4130
Gupta, V.K., Chandra, R., Tyagi, I., Verma, M.: Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J. Colloid Interface Sci. 478(15), 54–62 (2016). https://doi.org/10.1016/j.jcis.2016.05.064
Han, D.S., Abdel-Wahab, A., Batchelor, B.: Surface complexation modeling of arsenic(III) and arsenic(V) adsorption onto nanoporous titania adsorbents (NTAs). J. Colloid Interface Sci. 348(2), 591–599 (2010). https://doi.org/10.1016/j.jcis.2010.04.088
Hidalgo, K.T.S., Blas, R.G., Quiles, E.O.O., Fachini, E.R., Garcia, J.C., Larios, E., Zayas, B., Yacaman, M.J., Cabrera, C.R.: Highly organized nanofiber formation from zero valent iron nanoparticles after cadmium water remediation. RSC Adv. 5, 2777–2784 (2015). https://doi.org/10.1039/C4RA13267J
Hong, P.K.A., Zeng, Y.: Degradation of pentachlorophenol by ozonation and biodegradability of intermediates. Water Res. 36(17), 4243–4254 (2002). https://doi.org/10.1016/S0043-1354(02)00144-6
Ismail, S.M., Labib, S., Attallah, S.S.: Preparation and characterization of nano-cadmium ferrite. J. Ceram. 2013(8), 1–8 (2013). https://doi.org/10.1155/2013/526434
Jiang, L., Liu, P., Zhao, S.: Magnetic ATP/FA/Poly(AA-co-AM) ternary nanocomposite microgel as selective adsorbent for removal of heavy metals from wastewater. Colloids Surf. A 470(1), 31–38 (2015a). https://doi.org/10.1016/j.colsurfa.2015.01.078
Jiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., Ouyang, T., Wang, Y.: Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Appl. Surf. Sci. 353(30), 1087–1094 (2015b). https://doi.org/10.1016/j.apsusc.2015.06.190
Karthikeyan, T., Rajgopal, S., Miranda, L.R.: Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater. 124(1), 192–199 (2005). https://doi.org/10.1016/j.jhazmat.2005.05.003
Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., Maurice, C.: Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ. Pollut. 144(1), 62–69 (2006). https://doi.org/10.1016/j.envpol.2006.01.010
Lázár, K., Kotasthane, A.N., Fejes, P.: Oxygen transfer centers in Fe-FER and Fe-MFI zeolites: redox behavior and Debye temperature derived from in situ Mössbauer spectra. Catal. Lett. 57(4), 171–177 (1999). https://doi.org/10.1023/a:1019020320948
Li, Z., Jean, J.-S., Jiang, W.-T., Chang, P.-H., Chen, C.-J., Liao, L.: Removal of arsenic from water using Fe-exchanged natural zeolite. J. Hazard. Mater. 187(1), 318–323 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.030
Liu, Y., Liu, P., Su, Z., Li, F., Wen, F.: Attapulgite–Fe3O4 magnetic nanoparticles via co-precipitation technique. Appl. Surf. Sci. 255(5), 2020–2025 (2008). https://doi.org/10.1016/j.apsusc.2008.06.193
Liu, Y., Wang, G., Huang, Q., Guo, L., Chen, X.: Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. Phys. Rev. Lett. 108(22), 225505 (2012). https://doi.org/10.1103/PhysRevLett.108.225505
Liu, T., Xue, L., Guo, X., Huang, Y., Zheng, C.: DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on alpha-Fe2O3(001). Environ. Sci. Technol. 50(9), 4863–4868 (2016). https://doi.org/10.1021/acs.est.5b06340
Luengo, C., Puccia, V., Avena, M.: Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. J. Hazard. Mater. 186(2), 1713–1719 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.074
Luo, J., Luo, X., Crittenden, J., Qu, J., Bai, Y., Peng, Y., Li, J.: Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ. Sci. Technol. 49(18), 11115–11124 (2015). https://doi.org/10.1021/acs.est.5b02903
Luo, J., Luo, X., Hu, C., Crittenden, J.C., Qu, J.: Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies. ACS Appl. Mater. Interfaces 8(29), 18912–18921 (2016). https://doi.org/10.1021/acsami.6b06046
Ozola, R., Krauklis, A., Leitietis, M., Burlakovs, J., Vircava, I., Ansone-Bertina, L., Bhatnagar, A., Klavins, M.: FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environ. Technol. Innov. (2016). https://doi.org/10.1016/j.eti.2016.06.003
Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., Benson, S.A.: Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82(2–3), 89–165 (2003). https://doi.org/10.1016/s0378-3820(03)00059-6
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
Quan, G., Zhang, J., Guo, J., Lan, Y.: Removal of Cr (VI) from aqueous solution by nanoscale zero-valent iron grafted on acid-activated attapulgite. Water Air Soil Pollut. 225(6), 1979 (2014). https://doi.org/10.1007/s11270-014-1979-9
Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., Li, L.: Adsorption of arsenic on modified montmorillonite. Appl. Clay Sci. 97–98, 17–23 (2014). https://doi.org/10.1016/j.clay.2014.05.028
Shawabkeh, R., Al-Harahsheh, A., Hami, M., Khlaifat, A.: Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel 83(7–8), 981–985 (2004). https://doi.org/10.1016/j.fuel.2003.10.009
Taffarel, S.R., Rubio, J.: Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Miner. Eng. 23(14), 1131–1138 (2010). https://doi.org/10.1016/j.mineng.2010.07.007
Ungureanu, G., Santos, S., Boaventura, R., Botelho, C.: Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 151(19), 326–342 (2015). https://doi.org/10.1016/j.jenvman.2014.12.051
Vaughan, R.L. Jr., Reed, B.E.: Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res. 39(6), 1005–1014 (2005). https://doi.org/10.1016/j.watres.2004.12.034
Xie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y.: Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface. J. Colloid Interface Sci. 455, 55–62 (2015). https://doi.org/10.1016/j.jcis.2015.05.041
Yang, Y., Liu, J., Zhang, B., Liu, F.: Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4. J. Hazard. Mater. 321, 154–161 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.007
Zhang, M., Wang, Y., Zhao, D., Pan, G.: Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chin. Sci. Bull. 55(4), 365–372 (2010a). https://doi.org/10.1007/s11434-009-0703-4
Zhang, S., Niu, H., Cai, Y., Zhao, X., Shi, Y.: Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158(3), 599–607 (2010b). https://doi.org/10.1016/j.cej.2010.02.013
Zhang, W.P., Xu, H.B., Wang, J., Wang, J., Wang, B.B.: Removal of As (V) from drinking water by attapulgite loaded with Fe(III) adsorbent. Adv. Mater. Res. (2013). https://doi.org/10.4028/www.scientific.net/AMR.750-752.1452