Adsorption of arsenic on iron modified attapulgite (Fe/ATP): surface complexation model and DFT studies

Adsorption - Tập 24 - Trang 459-469 - 2018
Hong Pan1, Huijie Hou1, Jing Chen1, Hongbo Li1, Linling Wang1
1School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China

Tóm tắt

The adsorption behaviors of arsenic As(V) on the iron modified attapulgite (Fe/ATP) were studied. Two types of Fe/ATP nanoparticles, including Fe(III)/ATP and Fe(II,III)/ATP were prepared by ultrasonic co-precipitation method and characterized using SEM, XRD, XPS, FT-IR and zeta potential analyses. The adsorption isotherms of As(V) on Fe/ATP were well fitted by Freundlich model. The adsorption kinetics data were followed by the pseudo-second-order model with the pseud-second-order rate constant (k, min−1) of − 0.033 for Fe(III)/ATP and − 0.037 for Fe(II,III)/ATP, respectively. Adsorption capacities of Fe/ATP were 5–6 times higher than ATP (5.2 mg g‒1). The Fe–O(H) groups on Fe/ATP contributed to the strong interaction for As(V), confirmed with FT-IR and XPS analyses. The higher adsorption capacity of Fe(III)/ATP than that of Fe(II,III)/ATP was attributed to more surface hydroxyl groups on Fe(III)/ATP. Surface complexation models and density functional theory calculations demonstrated that As(V) sorption on Fe/ATP was by virtue of the formation of monodentate complexes.

Tài liệu tham khảo

Angele Ngantcha-Kwimi, T., Reed, B.E.: As(V) and PO4 removal by an iron-impregnated activated carbon in a single and binary adsorbate system: experimental and surface complexation modeling results. J. Environ. Eng. 142(1), 04015046 (2016). https://doi.org/10.1061/(asce)ee.1943-7870.0000989 Bhattacharyya, K.G., Gupta, S.S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interfaces 140(2), 114–131 (2008). https://doi.org/10.1016/j.cis.2007.12.008 Bhaumik, M., Noubactep, C., Gupta, V.K., McCrindle, R.I., Maity, A.: Polyaniline/Fe0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions. Chem. Eng. J. 271(1), 135–146 (2015). https://doi.org/10.1016/j.cej.2015.02.079 Biswas, A., Gustafsson, J.P., Neidhardt, H., Halder, D., Kundu, A.K., Chatterjee, D., Berner, Z., Bhattacharya, P.: Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res. 55, 30–39 (2014). https://doi.org/10.1016/j.watres.2014.02.002 Blanchard, M., Morin, G., Lazzeri, M., Balan, E., Dabo, I.: First-principles simulation of arsenate adsorption on the (1 1¯ 2) surface of hematite. Geochim. Cosmochim. Acta 86(86), 182–195 (2012). https://doi.org/10.1016/j.gca.2012.03.013 Burns, R.G.: Mineral Mössbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters. Hyperfine Interact. 91(1), 739–745 (1994). https://doi.org/10.1007/bf02064600 Cihanoğlu, A., Gündüz, G., Dükkancı, M.: Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites. Appl. Catal. B 165, 687–699 (2015). https://doi.org/10.1016/j.apcatb.2014.10.073 Dixit, S., Hering, J.G.: Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37(18), 4182–4189 (2003). https://doi.org/10.1021/es030309t Elwakeel, K.Z., Guibal, E.: Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents. Carbohydr. Polym. 134(10), 190–204 (2015). https://doi.org/10.1016/j.carbpol.2015.07.012 Fan, Q., Shao, D., Lu, Y., Wu, W., Wang, X.: Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na–attapulgite. Chem. Eng. J. 150(1), 188–195 (2009a). https://doi.org/10.1016/j.cej.2008.12.024 Fan, Q., Tan, X., Li, J., Wang, X., Wu, W., Montavon, G.: Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ. Sci. Technol. 43(15), 5776–5782 (2009b). https://doi.org/10.1021/es901241f Fernández, A.M., Sánchez-Ledesma, D.M., Gutiérrez-Nebot, L., Martínez, J.J., Romero, C., Labajo, M., Melón, A., Barrios, I.: Comprehensive characterization of palygorskite from Torrejón el Rubio (Spain) based on experimental techniques and theoretical DFT studies In: Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT). (2014). http://documenta.ciemat.es/handle/123456789/101 Giménez, J., Martínez, M., de Pablo, J., Rovira, M., Duro, L.: Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 141(3), 575–580 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.020 Goffinet, C.J., Mason, S.E.: Comparative DFT study of inner-sphere As(III) complexes on hydrated α-Fe2O3(0001) surface models. J. Environ. Monit. 14(7), 1860–1871 (2012). https://doi.org/10.1039/c2em30355h Goldberg, S.: Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 66(2), 413–421 (2002). https://doi.org/10.2136/sssaj2002.4130 Gupta, V.K., Chandra, R., Tyagi, I., Verma, M.: Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J. Colloid Interface Sci. 478(15), 54–62 (2016). https://doi.org/10.1016/j.jcis.2016.05.064 Han, D.S., Abdel-Wahab, A., Batchelor, B.: Surface complexation modeling of arsenic(III) and arsenic(V) adsorption onto nanoporous titania adsorbents (NTAs). J. Colloid Interface Sci. 348(2), 591–599 (2010). https://doi.org/10.1016/j.jcis.2010.04.088 Hidalgo, K.T.S., Blas, R.G., Quiles, E.O.O., Fachini, E.R., Garcia, J.C., Larios, E., Zayas, B., Yacaman, M.J., Cabrera, C.R.: Highly organized nanofiber formation from zero valent iron nanoparticles after cadmium water remediation. RSC Adv. 5, 2777–2784 (2015). https://doi.org/10.1039/C4RA13267J Hong, P.K.A., Zeng, Y.: Degradation of pentachlorophenol by ozonation and biodegradability of intermediates. Water Res. 36(17), 4243–4254 (2002). https://doi.org/10.1016/S0043-1354(02)00144-6 Ismail, S.M., Labib, S., Attallah, S.S.: Preparation and characterization of nano-cadmium ferrite. J. Ceram. 2013(8), 1–8 (2013). https://doi.org/10.1155/2013/526434 Jiang, L., Liu, P., Zhao, S.: Magnetic ATP/FA/Poly(AA-co-AM) ternary nanocomposite microgel as selective adsorbent for removal of heavy metals from wastewater. Colloids Surf. A 470(1), 31–38 (2015a). https://doi.org/10.1016/j.colsurfa.2015.01.078 Jiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., Ouyang, T., Wang, Y.: Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Appl. Surf. Sci. 353(30), 1087–1094 (2015b). https://doi.org/10.1016/j.apsusc.2015.06.190 Karthikeyan, T., Rajgopal, S., Miranda, L.R.: Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater. 124(1), 192–199 (2005). https://doi.org/10.1016/j.jhazmat.2005.05.003 Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., Maurice, C.: Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ. Pollut. 144(1), 62–69 (2006). https://doi.org/10.1016/j.envpol.2006.01.010 Lázár, K., Kotasthane, A.N., Fejes, P.: Oxygen transfer centers in Fe-FER and Fe-MFI zeolites: redox behavior and Debye temperature derived from in situ Mössbauer spectra. Catal. Lett. 57(4), 171–177 (1999). https://doi.org/10.1023/a:1019020320948 Li, Z., Jean, J.-S., Jiang, W.-T., Chang, P.-H., Chen, C.-J., Liao, L.: Removal of arsenic from water using Fe-exchanged natural zeolite. J. Hazard. Mater. 187(1), 318–323 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.030 Liu, Y., Liu, P., Su, Z., Li, F., Wen, F.: Attapulgite–Fe3O4 magnetic nanoparticles via co-precipitation technique. Appl. Surf. Sci. 255(5), 2020–2025 (2008). https://doi.org/10.1016/j.apsusc.2008.06.193 Liu, Y., Wang, G., Huang, Q., Guo, L., Chen, X.: Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. Phys. Rev. Lett. 108(22), 225505 (2012). https://doi.org/10.1103/PhysRevLett.108.225505 Liu, T., Xue, L., Guo, X., Huang, Y., Zheng, C.: DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on alpha-Fe2O3(001). Environ. Sci. Technol. 50(9), 4863–4868 (2016). https://doi.org/10.1021/acs.est.5b06340 Luengo, C., Puccia, V., Avena, M.: Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. J. Hazard. Mater. 186(2), 1713–1719 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.074 Luo, J., Luo, X., Crittenden, J., Qu, J., Bai, Y., Peng, Y., Li, J.: Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ. Sci. Technol. 49(18), 11115–11124 (2015). https://doi.org/10.1021/acs.est.5b02903 Luo, J., Luo, X., Hu, C., Crittenden, J.C., Qu, J.: Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies. ACS Appl. Mater. Interfaces 8(29), 18912–18921 (2016). https://doi.org/10.1021/acsami.6b06046 Ozola, R., Krauklis, A., Leitietis, M., Burlakovs, J., Vircava, I., Ansone-Bertina, L., Bhatnagar, A., Klavins, M.: FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environ. Technol. Innov. (2016). https://doi.org/10.1016/j.eti.2016.06.003 Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., Benson, S.A.: Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82(2–3), 89–165 (2003). https://doi.org/10.1016/s0378-3820(03)00059-6 Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865 Quan, G., Zhang, J., Guo, J., Lan, Y.: Removal of Cr (VI) from aqueous solution by nanoscale zero-valent iron grafted on acid-activated attapulgite. Water Air Soil Pollut. 225(6), 1979 (2014). https://doi.org/10.1007/s11270-014-1979-9 Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., Li, L.: Adsorption of arsenic on modified montmorillonite. Appl. Clay Sci. 97–98, 17–23 (2014). https://doi.org/10.1016/j.clay.2014.05.028 Shawabkeh, R., Al-Harahsheh, A., Hami, M., Khlaifat, A.: Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel 83(7–8), 981–985 (2004). https://doi.org/10.1016/j.fuel.2003.10.009 Taffarel, S.R., Rubio, J.: Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Miner. Eng. 23(14), 1131–1138 (2010). https://doi.org/10.1016/j.mineng.2010.07.007 Ungureanu, G., Santos, S., Boaventura, R., Botelho, C.: Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 151(19), 326–342 (2015). https://doi.org/10.1016/j.jenvman.2014.12.051 Vaughan, R.L. Jr., Reed, B.E.: Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res. 39(6), 1005–1014 (2005). https://doi.org/10.1016/j.watres.2004.12.034 Xie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y.: Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface. J. Colloid Interface Sci. 455, 55–62 (2015). https://doi.org/10.1016/j.jcis.2015.05.041 Yang, Y., Liu, J., Zhang, B., Liu, F.: Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4. J. Hazard. Mater. 321, 154–161 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.007 Zhang, M., Wang, Y., Zhao, D., Pan, G.: Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chin. Sci. Bull. 55(4), 365–372 (2010a). https://doi.org/10.1007/s11434-009-0703-4 Zhang, S., Niu, H., Cai, Y., Zhao, X., Shi, Y.: Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158(3), 599–607 (2010b). https://doi.org/10.1016/j.cej.2010.02.013 Zhang, W.P., Xu, H.B., Wang, J., Wang, J., Wang, B.B.: Removal of As (V) from drinking water by attapulgite loaded with Fe(III) adsorbent. Adv. Mater. Res. (2013). https://doi.org/10.4028/www.scientific.net/AMR.750-752.1452