Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations

Chemistry - A European Journal - Tập 16 Số 5 - Trang 1560-1571 - 2010
Javier Pérez-Pellitero1, Hedi Amrouche1,2, Flor R. Siperstein2, Gerhard D. Pirngruber1, Carlos Nieto‐Draghi1, Gérald Chaplais3, Angélique Simon‐Masseron3, Delphine Bazer-Bachi1, David Peralta1,3, Nicolas Bats1
1IFP Energies nouvelles
2University of Manchester, Manchester
3Institut de Science des Matériaux de Mulhouse

Tóm tắt

AbstractExperimental measurements and molecular simulations were conducted for two zeolitic imidazolate frameworks, ZIF‐8 and ZIF‐76. The transferability of the force field was tested by comparing molecular simulation results of gas adsorption with experimental data available in the literature for other ZIF materials (ZIF‐69). Owing to the good agreement observed between simulation and experimental data, the simulation results can be used to identify preferential adsorption sites, which are located close to the organic linkers. Topological mapping of the potential‐energy surfaces makes it possible to relate the preferential adsorption sites, Henry constant, and isosteric heats of adsorption at zero coverage to the nature of the host–guest interactions and the chemical nature of the organic linker. The role played by the topology of the solid and the organic linkers, instead of the metal sites, upon gas adsorption on zeolite‐like metal–organic frameworks is discussed.

Từ khóa


Tài liệu tham khảo

10.1126/science.1067208

10.1002/ange.200503778

10.1002/anie.200503778

10.1039/b600188m

10.1002/chem.200700181

10.1002/chem.200800736

10.1073/pnas.0602439103

10.1021/jp074889i

10.1038/nmat1927

10.1038/nature06900

10.1126/science.1152516

10.1021/ja809459e

10.1021/jp0477856

10.1080/00268970310001654854

10.1021/la0355500

10.1021/la060506g

10.1021/ef060578f

10.1021/la062289p

10.1039/B613378A

10.1039/b702986a

10.1002/ange.200803067

10.1002/anie.200803067

10.1021/jp062723w

10.1002/cphc.200600191

10.1002/ange.200700218

10.1002/anie.200700218

10.1021/j100389a010

10.1021/ja00051a040

10.1002/prot.340040106

10.1021/jp809408x

10.1021/jp807487f

10.1021/jp077387d

Liu D., 2009, J. Phys. Chem. A, 113, 5004

Fairen‐Jimenez D., 2008, Characterisation of Porous Solids VIII. Proceedings of the 8th International Symposium on the Characterisation of Porous Solids, 80

10.1021/jp8103276

10.1016/j.seppur.2007.12.003

10.1021/ja076595g

10.1021/la800369s

10.1021/la960495z

10.1016/j.micromeso.2007.08.022

10.1021/ja900258t

10.1021/jp073586l

10.1021/jp981200o

10.1080/00268979200100291

Paraview version 3.4 http://www.paraview.org.

10.1080/08927029708024135

10.1080/08927020701245509

Allen M. P., 1989, Computer Simulation of Liquids

The Cambridge Crystallographic Data Centrewww.ccdc.cam.ac.uk/data_request/cif.

10.1021/jp0461753

10.1021/jp048078f

Frenkel D., 2001, Understanding Molecular Simulation: From Algorithms to Applications

10.1021/la960325m

10.1103/PhysRev.136.B864

10.1002/jcc.540080616

10.1002/jcc.540110304

10.1063/1.448975

10.1063/1.1674902

Jaguar version 7.0 Schrödinger LLC New York 2007.