Nghiên cứu động lực học hấp phụ và thu hồi As(III) từ dung dịch nước bằng tro lọc thuốc lá đã sử dụng

Springer Science and Business Media LLC - Tập 9 - Trang 1-8 - 2019
Pezhman Zein Al-Salehin1, Farid Moeinpour2, Fatemeh S. Mohseni-Shahri2
1Department of Water and Wastewater Engineering, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
2Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

Tóm tắt

Trong bài báo này, tro lọc thuốc lá đã sử dụng được chuẩn bị và sử dụng làm chất hấp phụ hoạt động để loại bỏ ion As(III) ra khỏi dung dịch nước. Cấu trúc chất hấp phụ được xác định bằng phân tích kính hiển vi điện tử quét, phương pháp Brunauer–Emmett–Teller và phân tích quang phổ tia X tán xạ năng lượng. Ảnh hưởng của thời gian tiếp xúc, pH, liều lượng chất hấp phụ và nồng độ ban đầu của As(III) đến quá trình loại bỏ As(III) đã được đánh giá. Một số mô hình đẳng nhiệt đã được kiểm tra để minh họa sự cân bằng hấp phụ. Dữ liệu cân bằng hấp phụ phù hợp tốt với mô hình đẳng nhiệt Langmuir. Khả năng hấp phụ tối đa đạt được là 33,33 mg/g từ mô hình Langmuir. Các biến động lực học được tính toán xác nhận rằng quá trình hấp phụ là tự phát và endothermic.

Từ khóa

#As(III) #chất hấp phụ #tro lọc thuốc lá #mô hình đẳng nhiệt Langmuir #động lực học hấp phụ

Tài liệu tham khảo

Ardejani FD, Badii K, Limaee NY, Shafaei SZ, Mirhabibi A (2008) Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: effect of pH, initial concentration and shell type. J Hazard Mater 151(2–3):730–737 Barnes RL (2011) Regulating the disposal of cigarette butts as toxic hazardous waste. Tob Control 20(Suppl 1):i45–i48 Bazrafshan E, Kord Mostafapour F, Rahdar S, Mahvi AH (2015) Equilibrium and thermodynamics studies for decolorization of Reactive Black 5 (RB5) by adsorption onto MWCNTs. Desalin Water Treat 54(8):2241–2251 Bhowmick S, Chakraborty S, Mondal P, Van Renterghem W, Van den Berghe S, Roman-Ross G, Chatterjee D, Iglesias M (2014) Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism. Chem Eng J 243:14–23 Chowdhury T, Zhang L, Zhang J, Aggarwal S (2018) Removal of arsenic (III) from aqueous solution using metal organic framework-graphene oxide nanocomposite. Nanomaterials 8(12):1062 Habuda-Stanić M, Nujić M (2015) Arsenic removal by nanoparticles: a review. Environ Sci Pollut Res 22(11):8094–8123 Haddabi MA, Ahmed M, Jebri ZA, Vuthaluru H, Znad H, Kindi MA (2016) Boron removal from seawater using date palm (Phoenix dactylifera) seed ash. Desalin Water Treat 57(11):5130–5137 Hokkanen S, Doshi B, Srivastava V, Puro L, Koivula R (2019) Arsenic (III) removal from water by hydroxyapatite-bentonite clay-nanocrystalline cellulose. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13147 Huang P, Ye Z, Xie W, Chen Q, Li J, Xu Z, Yao M (2013) Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Water Res 47(12):4050–4058 Inoue K, Harada H, Ghimire KN, Biswas BK, Kawakita H, Ohto K (2018) Environmentally benign adsorption materials for removing arsenic from aquatic environment. Adv Mater Phys Chem 8(01):51 Kazi TG, Brahman KD, Baig JA, Afridi HI (2018) A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater. J Hazard Mater 357:159–167 Kerkez Ö, Bayazit ŞS (2014) Magnetite decorated multi-walled carbon nanotubes for removal of toxic dyes from aqueous solutions. J Nanopart Res 16(6):2431 Kumar M, Tamilarasan R, Sivakumar V (2013) Adsorption of Victoria blue by carbon/Ba/alginate beads: kinetics, thermodynamics and isotherm studies. Carbohydr Polym 98(1):505–513 Lee M, Kim GP, Song HD, Park S, Yi J (2014) Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology 25(34):345601 Li YF, Wang D, Li B, Dong L, Sun G (2019) Development of arsenic removal technology from drinking water in developing countries. Arsenic Contamination in Asia. Springer, Berlin, pp 163–179 Liu CH, Chuang YH, Chen TY, Tian Y, Li H, Wang MK, Zhang W (2015) Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies. Environ Sci Technol 49(13):7726–7734 Mishra S et al (2019) Heavy metal contamination: an alarming threat to environment and human health. In: Sobti R, Arora N, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_5 Moayedi H, Aghel B, Abdullahi MAM, Nguyen H, Rashid ASA (2019) Applications of rice husk ash as green and sustainable biomass. J Clean Prod 237:117851 Ngah WW, Hanafiah M (2008) Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies. Biochem Eng J 39(3):521–530 Novotny TE, Lum K, Smith E, Wang V, Barnes R (2009) Filtered cigarettes and the case for an environmental policy on cigarette waste. Int J Environ Res Public Health 6:1691–1705 Pholosi A, Naidoo EB, Ofomaja AE (2019) Enhanced Arsenic (III) adsorption from aqueous solution by magnetic pine cone biomass. Mater Chem Phys 222:20–30 Rahmani A, Ghafari HR, Samadi MT, Zarabi M (2011) Synthesis of zero valent iron nanoparticles (nzvi) and its efficiency in arsenic removal from aqueous solutions. Water Wastewater 1:35–41 Setyono D, Valiyaveettil S (2014) Chemically modified sawdust as renewable adsorbent for arsenic removal from water. ACS Sustain Chem Eng 2(12):2722–2729 Sigdel A, Park J, Kwak H, Park PK (2016) Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-impregnated alginate beads. J Indust Eng Chem 35:277–286 Smith EA, Novotny TE (2011) Whose butt is it? Tobacco industry research about smokers and cigarette butt waste. Tob Control 20(Suppl 1):i2–i9 Smith N, Lawson J, Khangura A, Johnson B (2015) Cigarette disposal investigation and assessment. https://doi.org/10.14288/1.0108867 Soleimani S, Azarian G, Moattar F, Karbassi A, Godini K, Niknam E (2018) Application of surfactant-modified montmorillonite for As(III) removal from aqueous solutions: kinetics and isotherm study. Desalin Water Treat 115:236–248 Soltani SM, Yazdi SK, Hosseini S (2014) Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters. Appl Nanosci 4(5):551–569 Song W, Zhang M, Liang J, Han G (2015) Removal of As (V) from wastewater by chemically modified biomass. J Mol Liq 206:262–267 Tang W, Li Q, Li C, Gao S, Shang JK (2011) Ultrafine α-Fe2O3 nanoparticles grown in confinement of in situ self-formed “cage” and their superior adsorption performance on arsenic (III). J Nanopar Res 13(6):2641–2651 Vázquez-Rivera NI, Soto-Pérez L, St John JN, Molina-Bas OI, Hwang SS (2015) Optimization of pervious concrete containing fly ash and iron oxide nanoparticles and its application for phosphorus removal. Constr Build Mater 93:22–28 Wang XS, Lu ZP, Miao HH, He W, Shen HL (2011) Kinetics of Pb(II) adsorption on black carbon derived from wheat residue. Chem Eng J 166(3):986–993 Zou W, Li K, Bai H, Shi X, Han R (2011) Enhanced cationic dyes removal from aqueous solution by oxalic acid modified rice husk. J Chem Eng Data 56(5):1882–1891