Adsorbate (substrate)-induced restructuring of active transition metal sites of heterogeneous and enzyme catalysts

Catalysis Letters - Tập 59 - Trang 89-91 - 1999
G.A. Somorjai1, Y. Borodko1
1Department of Chemistry, University of California, and Materials Sciences Division of Lawrence Berkeley National Laboratory, Berkeley, USA

Tóm tắt

Adsorbate-induced restructuring of transition metal surfaces and those of transition metal clusters embedded in metalloproteins has been shown to be a dominant phenomenon by LEED surface crystallography and X-ray crystallography studies, respectively. The restructuring is thermodynamically driven and is more facile for low-coordination metal sites (surface defects, steps and kinks, and nanoclusters). Dynamic restructuring of catalytically active transition metal sites may occur on the time scale of catalytic turnover or faster. The structural flexibility of transition metal surfaces and clusters embedded in enzymes could provide for seamless evolutionary changes of catalytic chemistry from inorganic to more complex and selective bio-organic systems.

Tài liệu tham khảo

G.A. Somorjai, Catal. Lett. 12 (1992) 17; Ann. Rev. Phys. Chem. 45 (1994) 721. D.E. Koshland, Jr., J. Cell. Comp. Physiol. 54 (1959) 245; Adv. Enzymol. 22 (1960) 1. A.M. Wander, M.A. Van Hove and G.A. Somorjai, Phys. Rev. Lett. 67 (1991) 626. P.J. Rous, M.A. Van Hove and G.A. Somorjai, Surf. Sci. 226 (1990) 15. P.R. Watson, M.A. Van Hove and K. Herman, Atlas of Surface Structures, Vols. 1 A and B, J. Phys. Chem. Ref. Data, Monograph No. 5 (Am. Chem. Soc., New York, 1994). B.J. McIntyre, M. Salmeron and G.A. Somorjai, J. Vac. Sci. Tech. A 11 (1993) 1964. N. Krause and A. Gaussmann, Surf. Sci. 266 (1992) 51. J.D. Batteas, A. Barbieri, E.K. Starkey, M.A. Van Hove and G.A. Somorjai, Surf. Sci. 313 (1994) 341. M. Gierer, A. Barbieri, M.A. Van Hove and G.A. Somorjai, Appl. Surf. Sci. 391 (1997) 176. M. Simonetta, Nouv. J. Chim. 10 (1986) 533. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Phys. Chem. 100 (1996) 16302. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Chem. Soc. Faraday Trans. 92 (1996) 4717. X. Su, P.S. Cremer, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 119 (1997) 3994. R. Imbihl and G. Ertl, Chem. Rev. 95 (1995) 697. M. Boudart, Adv. Catal. 20 (1969) 153. M. Salmeron, R.J. Gale and G.A. Somorjai, J. Chem. Phys. 70 (1979) 2807. D.R. Strongin, S.R. Bare and G.A. Somorjai, J. Catal. 103 (1987) 289. S.M. Davis, F. Zaera and G.A. Somorjai, J. Am. Chem. Soc. 104 (1982) 7453. C.D. Garner, J. Chem. Soc. Dalton Trans. (1997) 3903. E.I. Steifel, J. Chem. Soc. Dalton Trans. (1997) 3915. M.F. Perutz and G. Fermi, Haemoglobin and Myoglobin: Atlas of Molecular Structure in Biology, Vol. 2 (Oxford University Press, New York, 1981). E. Antoin and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Liquids (North-Holland, Amsterdam, 1971). R.E. Dickerson and I. Geis, Hemoglobin Structure, Function, Evolution, and Pathology (Benjamin/Cummings, Menlo Park, CA, 1983). K.A. Magnus, B. Hayes, H. Ton-That, C. Bonaventura, J. Bonaventura and W.G. Hal, Proteins: Struct. Funct. Genet. 19 (1994) 302. W.P. Jencks, Ann. Rev. Biochem. 66 (1997) 1. H.P. Lu, L.Y. Xun and X.S. Xie, Science 282 (1998) 1877. C.L. Tsou, Science 262 (1993) 380. H. Beinert, R.H. Holm and E. Munck, Science 277 (1997) 653. M.C. Kennedy, T.A. Kent, M. Emptage, H. Merklet, H. Beinert and E. Münck, J. Biol. Chem. 259 (1984) 14463. J.B. Howard and D.C. Rees, Chem. Rev. 96 (1996) 2965. J. Kim and D.C. Rees, Nature 360 (1992) 553. J.T. Bolin, A.E. Ronco, T.V. Morgan, L.E. Martenson and N.H. Xuong, Proc. Natl. Acad. Sci. 98 (1993) 1078. P.E.M. Siegbahn, J. Westerberg, M. Svensson and R.H. Crabtree, J. Phys. Chem. 102 (1998) 1615. T.A. Bazhenova and A.E. Shilov, Coord. Chem. Rev. 144 (1995) 69.