Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lefrak, E. A., Pitha, J., Rosenheim, S., & Gottlieb J. A. (1973). A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer, 32(2), 302–314.
Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57(7), 727–741.
Ferrans, V. J., Clark, J. R., Zhang, J., Yu, Z. X., & Herman, E. H. (1997). Pathogenesis and prevention of doxorubicin cardiomyopathy. Tsitologiia, 39(10), 928–937.
Olson, R. D., & Mushlin, P. S. (1990). Doxorubicin cardiotoxicity: Analysis of prevailing hypotheses [see comments]. FASEB Journal, 4(13), 3076–3086.
Singal, P. K., & Iliskovic N. (1998). Doxorubicin-induced cardiomyopathy [see comments]. New England Journal of Medicine, 339(13), 900–905.
Lou, H., Kaur, K., Sharma, A. K., & Singal, P. K. (2006). Adriamycin-induced oxidative stress, activation of MAP kinases and apoptosis in isolated cardiomyocytes. Pathophysiology, 13, 103–109.
Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biology, 329, 657–668.
Mailer, K., & Petering, D. H. (1976). Inhibition of oxidative phosphorylation in tumor cells and mitochondria by daunomycin and adriamycin. Biochemical Pharmacology, 25(18), 2085–2089.
Herman, E. H., el-Hage, A. N., Creighton, A. M., Witiak, D. T., & Ferrans, V. J. (1985). Comparison of the protective effect of ICRF-187 and structurally related analogues against acute daunorubicin toxicity in Syrian golden hamsters. Research Communications in Chemical Pathology and Pharmacology, 48(1), 39–55.
Lebrecht, D., Kokkori, A., Ketelsen, U. P., Setzer, B., & Walker, U. A. (2005). Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. Journal of Pathology, 207, 436–444.
Wallace, K. B. (2003). Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology & Toxicology, 93, 105–115.
Berthiaume, J. M., & Wallace K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–25.
Brown, H. R., Ni, H., Benavides, G., Yoon, L., Hyder, K., Giridhar, J., Gardner, G., Tyler, R. D., & Morgan, K. T. (2002). Correlation of simultaneous differential gene expression in the blood and heart with known mechanisms of adriamycin-induced cardiomyopathy in the rat. Toxicologic Pathology, 30, 452–469.
Marcillat, O., Zhang, Y., & Davies, K. J. (1989). Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochemical Journal, 259, 181–189.
Neri, B., Cini-Neri, G., & D’Alterio, M. (1984). Effect of anthracyclines and mitoxantrone on oxygen uptake and ATP intracellular concentration in rat heart slices. Biochemical and Biophysical Research Communications, 125, 954–960.
Aversano, R. C., & Boor, P. J. (1983). Histochemical alterations of acute and chronic doxorubicin cardiotoxicity. Journal of Molecular and Cellular Cardiology, 15(8), 543–553.
Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Journal of Biological Chemistry, 261(7), 3060–3067.
Doroshow, J. H., & Davies K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry, 261(7), 3068–3074.
Solem, L. E., Henry, T. R., & Wallace, K. B. (1994). Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration. Toxicology and Applied Pharmacology, 129(2), 214–222.
Santos, D. L., Moreno, A. J. M. , Leino, R. L., Froberg, M. K., & Wallace, K. B. (2002). Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicology and Applied Pharmacology, 184, 218–227.
Mimnaugh, E. G., Trush, M. A., Bhatnagar, M., & Gram T. E. (1985). Enhancement of reactive oxygen-dependent mitochondrial membrane lipid peroxidation by the anticancer drug adriamycin. Biochemical Pharmacology, 34(6), 847–856.
Boucek, R. J. Jr., Olson, R. D., Brenner, D. E., Ogunbunmi, E. M., Inui, M., & Fleischer, S. (1987). The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. Journal of Biological Chemistry, 262(33), 15851–15856.
Goormaghtigh, E., Huart, P., Praet, M., Brasseur, R., & Ruysschaert, J. M. (1990). Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophysical Chemistry, 35(2–3), 247–257.
Gosalvez, M., Blanco, M., Hunter, J., Miko, M., & Chance, B. (1974). Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. European Journal of Cancer, 10(9), 567–574.
Singal, P. K., Deally, C. M., & Weinberg, L. E. (1987). Subcellular effects of adriamycin in the heart: a concise review. Journal of Molecular and Cellular Cardiology, 19(8), 817–828.
Ferrero, M. E., Ferrero, E., Gaja, G., & Bernelli-Zazzera, A. (1976). Adriamycin: Energy metabolism and mitochondrial oxidations in the heart of treated rabbits. Biochemical Pharmacology, 25(2), 125–130.
Hoek, J. B., Farber, J. L., Thomas, A. P., & Wang, X. (1995). Calcium ion-dependent signalling and mitochondrial dysfunction: Mitochondrial calcium uptake during hormonal stimulation in intact liver cells and its implication for the mitochondrial permeability transition. Biochimica et Biophysica Acta, 1271(1), 93–102.
Miyata, H., Silverman, H. S., Sollott, S. J., Lakatta, E. G., Stern, M. D., & Hansford, R. G. (1991). Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. American Journal of Physiology, 261(4 Pt 2), H1123–H1134.
Sparagna, G. C., Gunter, K. K., Sheu, S. S., & Gunter, T. E. (1995). Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. Journal of Biological Chemistry, 270(46), 27510–27515.
Rudge, M. F., & Duncan, C. J. (1984). Comparative studies on the role of calcium in triggering subcellular damage in cardiac muscle. Comparative Biochemistry and Physiology A, 77(3), 459–468.
Li, Q., Hohl, C. M., Altschuld, R. A., & Stokes, B. T. (1989). Energy depletion-repletion and calcium transients in single cardiomyocytes. American Journal of Physiology, 257(3 Pt 1), C427–C434.
Solem, L. E., Heller, L. J., & Wallace, K. B. (1996). Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. Journal of Molecular and Cellular Cardiology, 28(5), 1023–1032.
Solem, L. E., & Wallace, K. B. (1993). Selective activation of the sodium-independent, cyclosporine A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicology and Applied Pharmacology, 121(1), 50–57.
Bachmann, E., & Zbinden, G. (1979). Effect of doxorubicin and rubidazone on respiratory function and Ca2+ transport in rat heart mitochondria. Toxicology Letters, 3, 29–34.
Chacon, E., & Acosta, D. (1991). Mitochondrial regulation of superoxide by Ca2+: An alternate mechanism for the cardiotoxicity of doxorubicin. Toxicology and Applied Pharmacology, 107(1), 117–128.
Sokolove, P. M., & Shinaberry, R. G. (1988). Na+-independent release of Ca2+ from rat heart mitochondria. Induction by adriamycin aglycone. Biochemical Pharmacology, 37(5), 803–812.
Sokolove, P. M. (1990). Inhibition by cyclosporine A and butylated hydroxytoluene of the inner mitochondrial membrane permeability transition induced by adriamycin aglycones. Biochemical Pharmacology, 40(12), 2733–2736.
Singal, P. K., Forbes, M. S., & Sperelakis, N. (1984). Occurrence of intramitochondrial Ca2+ granules in a hypertrophied heart exposed to adriamycin. Canadian Journal of Physiology and Pharmacology, 62, 1239–1244.
Gunter, K. K., & Gunter, T. E. (1994). Transport of calcium by mitochondria. Journal Of Bioenergetics and Biomembranes, 26(5), 471–485.
Gunter, T. E., & Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. American Journal of Physiology, 258(5 Pt 1), C755–C786.
Denton, R. M., & McCormack, J. G. (1990). Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annual Review of Physiology, 52, 451–466.
Bernardi, P., Broekemeier, K. M., & Pfeiffer, D. R. (1994). Recent progress on regulation of the mitochondrial permeability transition pore; a sensitive-sensitive pore in the inner mitochondrial membrane. Journal Of Bioenergetics and Biomembranes, 26(5), 509–517.
Al-Nasser, I. A. (1998). In vivo prevention of adriamycin cardiotoxicity by cyclosporine A or FK506. Toxicology, 131, 175–181.
Zhou, S., Starkov, A., & Wallace, K. B. (2001). Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Research, 61, 771–777.
Bernardi, P. (1999). Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiological Reviews, 79(4), 1127–1155.
Richter, C., & Schlegel, J. (1993). Mitochondrial calcium release induced by prooxidants. Toxicology Letters, 67(1–3), 119–127.
Wallace, K. B., Eells, J. T., Madeira, V. M., Cortopassi, G., & Jones, D. P. (1997). Mitochondria-mediated cell injury. Symposium overview. Fundamental and Applied Toxicology, 38(1), 23–37.
Imberti, R., Nieminen, A. L., Herman, B., & Lemasters, J. J. (1993). Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: Protection by fructose, cyclosporine A and trifluoperazine. Journal of Pharmacology and Experimental Therapeutics, 265(1), 392–400.
Groskreutz, J. L., Bronk, S. F., & Gores, G. J. (1992). Ruthenium red delays the onset of cell death during oxidative stress of rat hepatocytes. Gastroenterology, 102(3), 1030–1038.
Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., & Farber, J. L. (1993). Cyclosporine and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. Journal of Biological Chemistry, 268(19), 13791–13798.
Henry, T. R., & Wallace, K. B. (1996). Differential mechanisms of cell killing by redox cycling and arylating quinones. Archives of Toxicology, 70(8), 482–489.
Petronilli, V., Cola, C., Massari, S., Colonna, R., & Bernardi, P. (1993). Physiological effectors modify voltage sensing by the cyclosporine A- sensitive permeability transition pore of mitochondria. Journal of Biological Chemistry, 268(29), 21939–21945.
Petronilli, V., Cola, C., & Bernardi, P. (1993). Modulation of the mitochondrial cyclosporine A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+. Journal of Biological Chemistry, 268(2), 1011–1016.
Petronilli, V., Nicolli, A., Costantini, P., Colonna, R., & Bernardi, P. (1994). Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporine A. Biochimica et Biophysica Acta, 1187(2), 255–259.
Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., & Bernardi, P. (1994). The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. Journal of Biological Chemistry, 269(24), 16638–16642.
Fagian, M. M., Pereira-da-Silva, L., Martins, I. S., & Vercesi, A. E. (1990). Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. Journal of Biological Chemistry, 265(32), 19955–19960.
Meredith, M. J., & Reed, D. J. (1983). Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Biochemical Pharmacology, 32(8), 1383–1388.
Oliveira, P. J., & Wallace, K. B. (2006). Depletion of adenine nucleotide translocator protein in heart mitochodria from doxorubicin-treated rats—Relevance for mitochondrial dysfunction. Toxicology, 220, 160–168.
Halestrap, A. P., Woodfield, K. Y., & Connern, C. P. (1997). Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. Journal of Biological Chemistry, 272(6), 3346–3354.
Halestrap, A. P., Kerr, P. M., Javadov, S., & Woodfield, K. Y. (1998). Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochimica et Biophysica Acta, 1366(1–2), 79–94.
Oliveira, P. J., Santos, M. S., & Wallace, K. B. (2005). Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Moscow), 71, 194–199.
Serrano, J., Palmeira, C. M., Kuehl, D. W., & Wallace, K. B. (1999). Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochimica et Biophysica Acta, 1411(1), 201–205.
Palmeira, C. M., Serrano, J., Kuehl, D. W., & Wallace, K. B. (1997). Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochimica et Biophysica Acta, 1321(2), 101–106.
Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 121, 151–157.
Chacon, E., Ohata, H., Harper, I. S., Trollinger, D. R., Herman, B., & Lemasters, J. J. (1996). Mitochondrial free calcium transients during excitation-contraction coupling in rabbit cardiac myocytes. FEBS Letters, 382(1–2), 31–36.
Herrington, J., Park, Y. B., Babcock, D. F., & Hille, B. (1996). Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron, 16(1), 219–228.
Isenberg, G., Han, S., Schiefer, A., & Wendt-Gallitelli, M. F. (1993). Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovascular Research, 27(10), 1800–1809.
Gillis, J. M. (1997). Inhibition of mitochondrial calcium uptake slows down relaxation in mitochondria-rich skeletal muscles. Journal of Muscle Research and Cell Motility, 18(4), 473–483.
Loew, L. M., Carrington, W., Tuft, R. A., & Fay, F. S. (1994). Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarizations. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12579–12583.