Adoptive Regulatory T-cell Therapy Attenuates Perihematomal Inflammation in a Mouse Model of Experimental Intracerebral Hemorrhage

Springer Science and Business Media LLC - Tập 37 - Trang 919-929 - 2016
Lei-Lei Mao1, Hui Yuan1,2, Wen-wen Wang1, Yu-jing Wang1, Ming-feng Yang1, Bao-liang Sun1,2, Zong-yong Zhang1, Xiao-yi Yang1
1Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, China
2Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China

Tóm tắt

The CD4+CD25+ regulatory T cells (Tregs), an innate immunomodulator, suppress cerebral inflammation and maintain immune homeostasis in multiple central nervous system injury, but its role in intracerebral hemorrhage (ICH) has not been fully characterized. This study investigated the effect of Tregs on brain injury using the mouse ICH model, which is established by autologous blood infusion. The results showed that tail intravenous injection of Tregs significantly reduced brain water content and Evans blue dye extravasation of perihematoma at day (1, 3 and 7), and improved short- and long-term neurological deficits following ICH in mouse model. Tregs treatment reduced the content of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and malondialdehyde, while increasing the superoxide dismutase (SOD) enzymatic activity at day (1, 3 and 7) following ICH. Furthermore, Tregs treatment obviously reduced the number of NF-κB+, IL-6+, TUNEL+ and active caspase-3+ cells at day 3 after ICH. These results indicate that adoptive transfer of Tregs may provide neuroprotection following ICH in mouse models.

Tài liệu tham khảo

Aronowski J, Hall CE (2005) New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res 27(3):268–279. doi:10.1179/016164105X25225 Castillo J, Davalos A, Alvarez-Sabin J, Pumar JM, Leira R, Silva Y, Montaner J, Kase CS (2002) Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 58(4):624–629 Chen S, Yang Q, Chen G, Zhang JH (2015) An update on inflammation in the acute phase of intracerebral hemorrhage. Transl Stroke Res 6(1):4–8. doi:10.1007/s12975-014-0384-4 Duan X, Wen Z, Shen H, Shen M, Chen G (2016) Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxidative Med Cell Longev 2016:1203285. doi:10.1155/2016/1203285 Galho AR, Cordeiro MF, Ribeiro SA, Marques MS, Antunes MF, Luz DC, Hadrich G, Muccillo-Baisch AL, Barros DM, Lima JV, Dora CL, Horn AP (2016) Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats. Nanotechnology 27(17):175101. doi:10.1088/0957-4484/27/17/175101 Hickenbottom SL, Grotta JC, Strong R, Denner LA, Aronowski J (1999) Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats. Stroke 30(11):2472–2477 (discussion 2477–2478) Holmin S, Mathiesen T (2000) Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema. J Neurosurg 92(1):108–120. doi:10.3171/jns.2000.92.1.0108 Hu X, Tao C, Gan Q, Zheng J, Li H, You C (2016) Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxidative Med Cell Longev 2016:3215391. doi:10.1155/2016/3215391 Hua Y, Wu J, Keep RF, Nakamura T, Hoff JT, Xi G (2006) Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery 58(3):542–550. doi:10.1227/01.NEU.0000197333.55473.AD (discussion 542–550) Hwang BY, Appelboom G, Ayer A, Kellner CP, Kotchetkov IS, Gigante PR, Haque R, Kellner M, Connolly ES (2011) Advances in neuroprotective strategies: potential therapies for intracerebral hemorrhage. Cerebrovasc Dis 31(3):211–222. doi:10.1159/000321870 Joice SL, Mydeen F, Couraud PO, Weksler BB, Romero IA, Fraser PA, Easton AS (2009) Modulation of blood-brain barrier permeability by neutrophils: in vitro and in vivo studies. Brain Res 1298:13–23. doi:10.1016/j.brainres.2009.08.076 Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11(8):720–731. doi:10.1016/S1474-4422(12)70104-7 Krafft PR, McBride DW, Lekic T, Rolland WB, Mansell CE, Ma Q, Tang J, Zhang JH (2014) Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage. Behav Brain Res 264:151–160. doi:10.1016/j.bbr.2014.01.052 Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, Liang W, Thomson AW, Chen J, Hu X (2013a) Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 74(3):458–471. doi:10.1002/ana.23815 Li P, Mao L, Zhou G, Leak RK, Sun BL, Chen J, Hu X (2013b) Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia. Stroke 44(12):3509–3515. doi:10.1161/STROKEAHA.113.002637 Liesz A, Kleinschnitz C (2016) Regulatory T cells in post-stroke immune homeostasis. Transl Stroke Res 7(4):313–321. doi:10.1007/s12975-016-0465-7 Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199. doi:10.1038/nm.1927 Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW (2012) Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflamm 9:46. doi:10.1186/1742-2094-9-46 Megyeri P, Abraham CS, Temesvari P, Kovacs J, Vas T, Speer CP (1992) Recombinant human tumor necrosis factor alpha constricts pial arterioles and increases blood-brain barrier permeability in newborn piglets. Neurosci Lett 148(1–2):137–140 Murthy SB, Moradiya Y, Dawson J, Lees KR, Hanley DF, Ziai WC, Collaborators V-I (2015) Perihematomal edema and functional outcomes in intracerebral hemorrhage: influence of hematoma volume and location. Stroke 46(11):3088–3092. doi:10.1161/STROKEAHA.115.010054 Nag S, Manias JL, Stewart DJ (2009) Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol 118(2):197–217. doi:10.1007/s00401-009-0541-0 Nguyen HX, O’Barr TJ, Anderson AJ (2007) Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J Neurochem 102(3):900–912. doi:10.1111/j.1471-4159.2007.04643.x Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26(5):654–665. doi:10.1038/sj.jcbfm.9600217 Rynkowski MA, Kim GH, Komotar RJ, Otten ML, Ducruet AF, Zacharia BE, Kellner CP, Hahn DK, Merkow MB, Garrett MC, Starke RM, Cho BM, Sosunov SA, Connolly ES (2008) A mouse model of intracerebral hemorrhage using autologous blood infusion. Nat Protoc 3(1):122–128. doi:10.1038/nprot.2007.513 Shi L, Qin J, Song B, Wang QM, Zhang R, Liu X, Liu Y, Hou H, Chen X, Ma X, Jiang C, Sun X, Gong G, Xu Y (2015) Increased frequency of circulating regulatory T cells in patients with acute cerebral hemorrhage. Neurosci Lett 591:115–120. doi:10.1016/j.neulet.2015.02.042 Stubbe T, Ebner F, Richter D, Engel O, Klehmet J, Royl G, Meisel A, Nitsch R, Meisel C, Brandt C (2013) Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab 33(1):37–47. doi:10.1038/jcbfm.2012.128 Taylor RA, Sansing LH (2013) Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013:746068. doi:10.1155/2013/746068 Urday S, Beslow LA, Dai F, Zhang F, Battey TW, Vashkevich A, Ayres AM, Leasure AC, Selim MH, Simard JM, Rosand J, Kimberly WT, Sheth KN (2016) Rate of perihematomal edema expansion predicts outcome after intracerebral hemorrhage. Crit Care Med 44(4):790–797. doi:10.1097/CCM.0000000000001553 Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532. doi:10.1038/nri2343 Wakai T, Narasimhan P, Sakata H, Wang E, Yoshioka H, Kinouchi H, Chan PH (2015) Hypoxic preconditioning enhances neural stem cell transplantation therapy after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab. doi:10.1177/0271678X15613798 Wang Y, Mao L, Zhang L, Zhang L, Yang M, Zhang Z, Li D, Fan C, Sun B (2016) Adoptive regulatory T-cell therapy attenuates subarachnoid hemorrhage-induced cerebral inflammation by suppressing TLR4/NF-B signaling pathway. Curr Neurovasc Res 13(2):121–126 Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11(1):7–13. doi:10.1038/ni.1818 Wu J, Yang S, Xi G, Song S, Fu G, Keep RF, Hua Y (2008) Microglial activation and brain injury after intracerebral hemorrhage. Acta Neurochir Suppl 105:59–65 Yan J, Greer JM, Etherington K, Cadigan GP, Cavanagh H, Henderson RD, O’Sullivan JD, Pandian JD, Read SJ, McCombe PA (2009) Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol 206(1–2):112–117. doi:10.1016/j.jneuroim.2008.11.001 Yang Z, Yu A, Liu Y, Shen H, Lin C, Lin L, Wang S, Yuan B (2014) Regulatory T cells inhibit microglia activation and protect against inflammatory injury in intracerebral hemorrhage. Int Immunopharmacol 22(2):522–525. doi:10.1016/j.intimp.2014.06.037 Zhang L, Schallert T, Zhang ZG, Jiang Q, Arniego P, Li Q, Lu M, Chopp M (2002) A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods 117(2):207–214 Zhang ZY, Jiang M, Fang J, Yang MF, Zhang S, Yin YX, Li DW, Mao LL, Fu XY, Hou YJ, Fu XT, Fan CD, Sun BL (2015a) Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood–brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol Neurobiol. doi:10.1007/s12035-015-9635-y Zhang ZY, Sun BL, Yang MF, Li DW, Fang J, Zhang S (2015b) Carnosine attenuates early brain injury through its antioxidative and anti-apoptotic effects in a rat experimental subarachnoid hemorrhage model. Cell Mol Neurobiol 35(2):147–157. doi:10.1007/s10571-014-0106-1 Zhao X, Zhang Y, Strong R, Zhang J, Grotta JC, Aronowski J (2007) Distinct patterns of intracerebral hemorrhage-induced alterations in NF-kappaB subunit, iNOS, and COX-2 expression. J Neurochem 101(3):652–663. doi:10.1111/j.1471-4159.2006.04414.x Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW (2014) Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 115:25–44. doi:10.1016/j.pneurobio.2013.11.003 Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, Zhu WY, Liao MF, Wu LR, Yang YR, Liu J, Duan CM, Li J, Gong QW, Liu L, Yang MH, Xiong A, Wang J, Yang QW (2016) Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3beta/PTEN axis. J Cereb Blood Flow Metab. doi:10.1177/0271678X16648712