Adoption of digital technologies in agriculture—an inventory in a european small-scale farming region
Tóm tắt
As digitalization in the agricultural sector has intensified, the number of studies addressing adoption and use of digital technologies in crop production and livestock farming has also increased. However, digitalization trends in the context of small-scale farming have mainly been excluded from such studies. The focus of this paper is on investigating the sequential adoption of precision agriculture (PA) and other digital technologies, and the use of multiple technologies in a small-scale agricultural region in southern Germany. An online survey of farmers yielded a total of 2,390 observations, of which 1,820 operate in field farming, and 1,376 were livestock farmers. A heuristic approach was deployed to identify adoption patterns. Probable multiple uses of 30 digital farming technologies and decision-support applications, as well as potential trends of sequential technology adoption were analyzed for four sequential points of adoption (entry technology, currently used technologies, and planned short-term and mid-term investments). Results show that Bavarian farmers cannot be described as exceedingly digitalized but show potential adoption rates of 15–20% within the next five years for technologies such as barn robotics, section control, variable-rate applications, and maps from satellite data. Established use of entry technologies (e.g., automatic milking systems, digital field records, automatic steering systems) increased the probability of adoption of additional technologies. Among the most used technologies, the current focus is on user-friendly automation solutions that reduce farmers’ workload. Identifying current equipment and technology trends in small-scale agriculture is essential to strengthen policy efforts to promote digitalization.
Tài liệu tham khảo
Asare, E., & Segarra, E. (2018). Adoption and extent of adoption of georeferenced grid soil sampling technology by cotton producers in the southern US. Precision Agriculture, 19, 992–1010. https://doi.org/10.1007/s11119-018-9568-3
Annosi, M. C., Brunetta, F., Monti, A., & Nati, F. (2019). Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Computers in Industry, 109, 59–71. https://doi.org/10.1016/j.compind.2019.04.003
Barnes, A. P., Soto, I., Eory, V., Beck, B., Blafoutis, A., Sánchez, B. … Gómez-Barbero, M. (2019). Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy, 80, 163–174. https://doi.org/10.1016/j.landusepol.2018.10.004
Berckmans, D. (2017). General introduction to precision livestock farming. Animal Frontiers, 7(1), 6–11. https://doi.org/10.2527/af.2017.0102
Berman, S. (2012). Digital transformation: opportunities to create new business models. Strategy & Leadership, 40(2), 16–24. https://doi.org/10.1108/10878571211209314
Blackmore, S., Godwin, R., & Fountas, S. (2003). The analysis of spatial and temporal trends in yield map data over six years. Biosystems Engineering, 84, 455–466. https://doi.org/10.1016/S1537-5110(03)00038-2
Blasius, J., & Brandt, M. (2010). Representativeness in online surveys through stratified samples. Bulletin of Sociological Methodology, 107(1), 5–21. https://doi.org/10.1177/0759106310369964
Borchers, M. R., & Bewley, J. M. (2015). An assessment of producer precision dairy farming technology use, prepurchase considerations, and usefulness. Journal of Dairy Science, 98(6), 4198–4205. https://doi.org/10.3168/jds.2014-8963
Bosc, P. M., Berdegué, J., Goïta, M., van der Ploeg, J. D., Sekine, K., & Zhang, L. (2013 June). Investing in smallholder agriculture for food security. Rome: Committee on World Food Security
Daberkow, S. G., & McBride, W. D. (1998). Socioeconomic Profiles of Early Adopters of Precision Agriculture Technologies. Journal of Agribusiness, 16(2), 151–168. https://doi.org/10.22004/ag.econ.90442
De Koning, C. J. A. M. (2010). Automatic Milking – Common Practice on Dairy Farms. Proceedings of The First North American Conference on Precision Dairy Management. Retrieved March 4, 2021, from http://www.precisiondairy.com/conferenceproceedings.html
DEFRA [Department for Environment, Food & Rural Affairs] (2020, March 5). Farm Practices Survey October 2019 – General. https://www.gov.uk/government/statistics/farm-practices-survey-october-2019-general
DeLay, N. D., Thompson, N. M., & Mintert, J. R. (2020). Precision agriculture technology adoption and technical efficiency. Journal of Agricultural Economics, 73(1), 195–219. https://doi.org/10.1111/1477-9552.12440
Destatis [German Federal Statistical Office] (2021). Strukturwandel in der Landwirtschaft hält an (German). Press release No. 28, January 21, 2021, Wiesbaden, Germany
Destatis [German Federal Statistical Office] (2018). Agrarstrukturerhebung 2016 (German), Wiesbaden, Germany
Eastwood, C. R., & Renwick, A. (2020). Innovation uncertainty impacts the adoption of smarter farming approaches. Frontiers in Sustainable Food Systems, 4, 24. https://doi.org/10.3389/fsufs.2020.00024
Erickson, B., Lowenberg-DeBoer, J., & Bradford, J. (2017). 2017 Precision agriculture dealership survey. Departments of Agricultural Economics and Agronomy, Purdue University. Retrieved March 24, 2018, from http://agribusiness.purdue.edu/precision-ag-survey
Eurostat (2018, November). Farms and farmland in the European Union-statistics. European Union. Retrieved July 5, 2021, from https://ec.europa.eu/eurostat/statistics-explained/index.php/Farms_and_farmland_in_the_European_Union_-_statistics#Farmland_in_2016
FAO (2013, May 30). International year of family farming 2014 Master plan. FAO. Retrieved March 22, 2021, from http://www.fao.org/fileadmin/user_upload/iyff/docs/Final_Master_Plan_IYFF_2014_30-05.pdf
Fernandez-Cornejo, J., Daberkow, S., & McBride, W. (2001). Decomposing the size effect on the adoption of innovations: Agrobiotechnology and precision agriculture. AgBioForum, 4(2), 124–236. https://doi.org/10.22004/ag.econ.20527
Floridi, M., Bartolini, F., Peerlings, J., Polman, N., & Viaggi, D. (2013). Modelling the adoption of automatic milking systems in Noord-Holland. Bio-based and Applied Economics, 2(1), 73–90. https://doi.org/10.13128/BAE-10882
Gabriel, A., Gandorfer, M., & Spykman, O. (2021). Nutzung und Hemmnisse digitaler Technologien in der Landwirtschaft Sichtweisen aus der Praxis und in den Fachmedien. Berichte über Landwirtschaft-Zeitschrift für Agrarpolitik und Landwirtschaft, 99(1), https://doi.org/10.12767/buel.v99i1.328
Gargiulo, J. I., Eastwood, C. R., Garcia, S. C., & Lyons, N. A. (2018). Dairy farmers with larger herd sizes adopt more precision dairy technologies. Journal of Dairy Science, 101(6), 5466–5473. https://doi.org/10.3168/jds.2017-13324
Graeub, B. E., Chappell, M. J., Wittman, H., Ledermann, S., Kerr, R. B., & Gemmill-Herren, B. (2016). The state of family farms in the world. World development, 87, 1–15. https://doi.org/10.1016/j.worlddev.2015.05.012
Greenwood, J. (1997). The third industrial revolution: Technology, productivity, and income inequality, No. 435. American Enterprise Institute
Griffin, T. W., Miller, N. J., Bergtold, J., Shanoyan, A., Sharda, A., & Ciampitti, I. A. (2017). Farm’s sequence of adoption of information-intensive precision agricultural technology. Applied Engineering in Agriculture, 33(4), 521–527. https://doi.org/10.13031/aea.12228
Groher, T., Heitkämper, K., Walter, A., Liebisch, F., & Umstätter, C. (2020). Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precision Agriculture, 21, 1327–1350. https://doi.org/10.1007/s11119-020-09723-5
Hansen, B. G., Herje, H. O., & Höva, J. (2019). Profitability on dairy farms with automatic milking systems compared to farms with conventional milking systems. International Food and Agribusiness Management Review, 22(2), 215–228. https://doi.org/10.22434/IFAMR2018.0028
Isgin, T., Bilgic, A., Forster, D. L., & Batte, M., M. T (2008). Using count models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption. Computers and Electronics in Agriculture, 62(2), 231–242. https://doi.org/10.1016/j.compag.2008.01.004
Kernecker, M., Knierim, A., Wurbs, A., Kraus, T., & Borges, F. (2020). Experience versus expectation: farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precision Agriculture, 21, 34–50. https://doi.org/10.1007/s11119-019-09651-z
Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wageningen Journal of Life Sciences, 90, 100315. https://doi.org/10.1016/j.njas.2019.100315
Koen, B. V. (1984). Toward a Definition of the Engineering Method. Engineering Education, 75(3), 150–155. https://doi.org/10.1080/03043798808939429
Kuehne, G., Llewellyn, R., Pannell, D. J., Wilkinson, R., Dolling, P., Ouzman, J., & Ewing, M. (2017). Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agricultural Systems, 156, 115–125. https://doi.org/10.1016/j.agsy.2017.06.007
Lambert, D. M., Lowenberg-DeBoer, J., Griffin, T. W., Peone, J., Payne, T., & Daberkow, S. G. (2004, June). Adoption, Profitability, and Making Better Use of Precision Farming Data. Working paper, No. 1239-2016-101578. https://ageconsearch.umn.edu/record/28615
Latvala, T., & Pyykkönen, P. (2005). Profitability of and Reasons for Adopting Automatic Milking Systems. Proceedings of XIth Congress of the European Association of Agricultural Economists, Copenhagen, Denmark, August 24–27, 2005
Lawson, L. G., Pedersen, S. M., Sørensen, C. G., Pesonen, L., Fountas, S., Werner, A. … Blackmore, S. (2011). A four-nation survey of farm information management and advanced farming systems: a descriptive analysis of survey responses. Computers and Electronics in Agriculture, 77(1), 7–20. https://doi.org/10.1016/j.compag.2011.03.002
Llewellyn, R., & Ouzman, J. (2014). Adoption of precision agriculture-related practices: status, opportunities and the role of farm advisers. Canberra, Australia: CSIRO: Report for Grains Research and Development Corporation
Lowenberg-DeBoer, J., & Erickson, B. (2019). Setting the record straight on precision agriculture adoption. Agronomy Journal, 111(4), 1552–1569. https://doi.org/10.2134/agronj2018.12.0779
Maloku, D. (2020). Adopion of precision farming technologies: USA and EU situation. SEA - Practical Application of Science, 8(22), 7–14
Miller, N. J., Griffin, T. W., Ciampitti, I. A., & Sharda, A. (2019). Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles. Precision Agriculture, 20, 348–361. https://doi.org/10.1007/s11119-018-9611-4
Mittenzwei, K., & Mann, S. (2017). The rationale of part-time farming: Empirical evidence from Norway. International Journal of Social Economics, 44(1), 53–59. https://doi.org/10.1108/IJSE-10-2014-0207
Montes, O., Munguia, O., & Llewellyn, R. (2020). The Adopters versus the Technology: Which Matters More when Predicting or Explaining Adoption? Applied Economic Perspectives and Policy, 42(1), 80–91. https://doi.org/10.1002/aepp.13007
Moreno, G., & Sunding, D. (2005). Joint estimation of technology adoption and land allocation with implications for the design of conservation policy. American Journal of Agricultural Economics, 87(4), 1009–1019. https://doi.org/10.1111/j.1467-8276.2005.00784.x
Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. (2017). Digital Innovation Management: Reinventing innovation management research in a digital world. MIS Quarterly, 41, 223–238
Paustian, M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture, 18, 701–716. https://doi.org/10.1007/s11119-016-9482-5
Pfeiffer, J., Gabriel, A., & Gandorfer, M. (2021). Klein gegen Groß–Vergleich von klein-und großstrukturierten Agrarregionen beim Einsatz digitaler Technologien [Small vs. large-comparison of small- and large-scale agricultural regions in the use of digital technologies]. In: Meyer-Aurich, A., Gandorfer, M., Hoffmann, C., Weltzien, C., Belluingrath-Kimura, S., & Floto H. (Eds.), Informations- und Kommunikationstechnologie in kritischen Zeiten. (pp. 247–252). Gesellschaft für Informatik
Pickthall, T., Trivett, E., Grove, I., & Kennedy, R. (2017). An investigation into the barriers that prevent the adoption of precision farming technologies in combinable cropping in the UK. Aspects of applied biology, 135
Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technology, 8, 61–69. https://doi.org/10.1016/j.protcy.2013.11.010
Reichardt, M., & Jürgens, C. (2009). Adoption and future perspective of precision farming in Germany; results of several surveys among different agricultural target groups. Precision Agriculture, 10, 73–94. https://doi.org/10.1007/s11119-008-9101-1
Reissig, L. (2020). Wahrnehmung der Digitalisierung in der Landwirtschaft durch Betriebsleiter von Betriebsgemeinschaften in der Schweiz [Perception of digitalization in agriculture by farm managers of farm communities in Switzerland]. In: Gandorfer, M., Meyer-Aurich, A., Bernhardt, H., Maidl, F. X., Frohlich, G., & Floto, H. (Eds.), Digitalisierung für Mensch, Umwelt und Tier (pp. 259–264). Gesellschaft für Informatik
Revilla, M., & Ochoa, C. (2017). Ideal and maximum length for a web survey. International Journal of Market Research, 59(5), 557–565. https://doi.org/10.2501/IJMR-2017-039
Robertson, M. J., Llewellyn, R. S., Mandel, R., Lawes, R., Bramley, R. G. V., Swift, L. … O’Callaghan, C. (2012). Adoption of variable rate fertiliser application in the Australian grains industry: status, issues, and prospects. Precision Agriculture, 13, 181–199. https://doi.org/10.1007/s11119-011-9236-3
Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). Free Press
Rohleder, B., Krüsken, B., & Reinhardt, H. (2020). Digitalisierung in der Landwirtschaft 2020 2020. Bitkom e.V. Retrieved January 12, 2021, from https://www.bitkom-research.de/system/files/document/200427_PK_Digitalisierung_der_Landwirtschaft.pdf
Rolandi, S., Brunori, G., Bacco, M., & Scotti, I. (2021). The Digitalization of Agriculture and Rural Areas: Towards a Taxonomy of the Impacts. Sustainability, 13, 5172. https://doi.org/10.3390/su13095172
Rotz, S., Gravely, E., Mosby, I., Duncan, E., Finnis, E., Horgan, M. … Fraser, E. (2019). Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. Journal of Rural Studies, 68, 112–122. https://doi.org/10.1016/j.jrurstud.2019.01.023
Rowe, E., Dawkins, M. S., & Gebhardt-Henrich, S. G. (2019). A systematic review of precision livestock farming in the poultry sector: Is technology focused on improving bird welfare? Animals, 9(9), 614. https://doi.org/10.3390/ani9090614
Schimmelpfennig, D., & Ebel, R. (2016). Sequential adoption and cost savings from precision agriculture. Journal of Agricultural and Resource Economics, 41, 97–115. https://doi.org/10.22004/ag.econ.230776
Schukat, S., Theuvsen, L., & Heise, H. (2019). IT in der Landwirtschaft: mit einheitlichen Definitionen zu einheitlichem Verständnis [IT in agriculture: with uniform definitions to uniform understanding]. In: Meyer-Aurich, A., Gandorfer, M., Barta, N., Gronauer, A., Kantelhardt, J., & Floto H. (Eds.), Digitalisierung für landwirtschaftliche Betriebe in kleinstrukturierten Regionen - ein Widerspruch in sich? (pp. 247–252). Gesellschaft für Informatik
Shang, L., Heckelei, T., Gerullis, M. K., Börner, J., & Rasch, S. (2021). Adoption and diffusion of digital farming technologies-integrating farm-level evidence and system interaction. Agricultural Systems, 190, 103074. https://doi.org/10.1016/j.agsy.2021.103074
Statistics, D. (2018). Advanced technology occupies Danish fields. (Danish.)https://www.dst.dk/da/Statistik/nyt/NytHtml
StMELF, [Bavarian State Ministry of Food, Agriculture and Forestry] (2020). Bayerischer Agrarbericht 2020 (German), Munich, Germany
Straete, E. P., Vik, J., & Hansen, B. G. (2017). The Social Robot: A Study of the Social and Political Aspects of Automatic Milking Systems. Proceedings in Systems Dynamics and Innovation in Food Networks 2017 (pp. 220–233). https://doi.org/10.18461/pfsd.2017.1722
Tamirat, T. W., Pedersen, S. M., & Lind, K. M. (2017). Farm and operator characteristics affecting adoption of precision agriculture in Denmark and Germany. Acta Agriculturae Scandinavica, 68(4), 349–357. https://doi.org/10.1080/ 09064710.2017.1402949
Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: a review for policy implications. Precision Agriculture, 13, 713–730. https://doi.org/10.1007/s11119-012-9273-6
Tey, Y. S., & Brindal, M. (2021). A meta-analysis of factors driving the adoption of precision agriculture. Precision Agriculture, 1–20. https://doi.org/10.1007/s11119-021-09840-9
Vik., J., Straete, E. P., Hansen, B. G., & Naerland, T. (2019). The political robot – The structural consequences of automated milking systems (AMS) in Norway. NJAS – Wageningen Journal of Life Sciences, 90–91, 100305. https://doi.org/10.1016/j.njas.2019.100305
Walton, J. C., Lambert, D. M., Roberts, R. K., Larson, J. A., English, B. C., Larkin, S. L. … Reeves, J. M. (2008). Adoption and abandonment of precision soil sampling in cotton production. Journal of Agricultural and Resource Economics, 33(3), 428–448. Retrieved October 13, 2020, from http://www.jstor.org/stable/41220602
Weersink, A., & Fulton, M. (2020). Limits to Profit Maximization as a Guide to Behavior Change. Applied Economic Perspectives and Policy, 42(1), 67–79. https://doi.org/10.1002/aepp.13004
Zheng, S., Wang, Z., & Wachenheim, C. J. (2018). Technology adoption among farmers in Jilin Province, China. China Agricultural Economic Review, 11(1), 206–216. https://doi.org/10.1108/CAER-11-2017-0216