Adjoint-enhanced flow visualization
Tóm tắt
This work presents a novel method of visually capturing the relative importance of different flow regions with respect to a quantity of interest. Existing flow visualization techniques are enhanced to convey flow importance. This is accomplished by filtering their output with additional information obtained from the adjoint counterpart of the physical flow field. The additional adjoint data is of equal resolution to the physical flow field. The adjoint flow data links physical fluid regions to user chosen quantities of interest. Thus, regions that are less relevant to the quantity of interest can be masked or deemphasized to reduce clutter and to highlight the behavior of the more important flow regions. The concept is demonstrated on a series of fluid simulations. The visualizations highlight the temporally changing importance of flow features, regions of influence in complex flows, and occlusion reduction in 3D flows. The method is also demonstrated by checking the impact of perturbations introduced in flow regions that were found to be both important and unimportant based on the adjoint data.
Tài liệu tham khảo
Chan Y, Correa CD, Ma K (2013) The generalized sensitivity scatterplot. IEEE TVCG 19(10):1768–1781
Chan Y, Correa C, Ma K (2010) Flow-based scatterplots for sensitivity analysis. In: Visual analytics science and technology (VAST), 2010 IEEE Symposium on, pp 43–50
Chaudhuri A, Lee TY, Shen HW, Wenger R (2014) Exploring flow fields using space-filling analysis of streamlines. IEEE TVCG 20(10):1392–1404
Chen M, Ebert D, Hagen H, Laramee RS, van Liere R, Ma K, Ribarsky W, Scheuermann G, Silver D (2009) Data, information, and knowledge in visualization. IEEE Comput Graph Appl 29(1):12–19
Correa C, Crnovrsanin T, Ma K (2012) Visual reasoning about social networks using centrality sensitivity. IEEE TVCG 18(1):106–120
Demir I, Kehrer J, Westermann R (2016) Screen-space silhouettes for visualizing ensembles of 3D isosurfaces. In: IEEE Pacific Visualization Symposium, pp 204–208
Doleisch H (2007) Simvis: interactive visual analysis of large and time-dependent 3D simulation data. Simul Conf 2007(Winter):712–720
Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65(3–4):393–415
Günther T, Rössl C, Theisel H (2013) Opacity optimization for 3D line fields. ACM Trans Graph 32(4):1:201–1:208
Guo Z, Ward MO, Rundensteiner EA, Ruiz C (2011) Pointwise local pattern exploration for sensitivity analysis. In: Visual analytics science and technology (VAST), 2011 IEEE conference on, pp 131–140
Koehler C, Wischgoll T, Dong H, Gaston Z (2011) Vortex visualization in ultra low reynolds number insect flight. IEEE TVCG 17(12):2071–2079
Laramee R, Hauser H, Doleisch H, Vrolijk B, Post F, Weiskopf D (2004) The state of the art in flow visualization: dense and texture-based techniques. Comput Graph Forum 23:2004
Li L, Shen H (2007) Image based streamline generation and rendering. IEEE TVCG 13(3):630–640
Li L, Hsieh H, Shen H (2008)Illustrative streamline placement and visualization. In: IEEE Pacific visualization symposium, pp 79–86
Ma J, Wang C, Shene C, Jiang J (2014) A graph-based interface for visual analytics of 3D streamlines and pathlines. IEEE TVCG 20(8):1127–1140
Marchesin S, Chen C, Ho C, Ma K (2010) View-dependent streamlines for 3D vector fields. IEEE TVCG 16(6):1578–1586
Marta AC, Shankaran S, Wang Q, Venugopal P (2013) Interpretation of adjoint solutions for turbomachinery flows. AIAA J 51(7):1733–1744
Martins J, Hwang J (2012) Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J 51(11):2582–2599
Matvienko V, Krüger J (2013) A metric for the evaluation of dense vector field visualizations. IEEE TVCG 19(7):1122–1132
Mavriplis DJ (2007) Discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes. AIAA J 45(4):741–750
Ma J, Wang C, Shene CK (2013) Coherent view-dependent streamline selection for importance-driven flow visualization. Proc. SPIE 8654(865):407–865, 407–15
McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2010) Over two decades of integration-based, geometric flow visualization. Comput Graph Forum 29(6):1807–1829
McNamara A, Treuille A, Popović Z, Stam J (2004) Fluid control using the adjoint method. ACM Trans Graph 23(3):449–456
Muigg P, Kehrer J, Oeltze S, Piringer H, Doleisch H, Preim B, Hauser H (2008) A four-level focus+context approach to interactive visual analysis of temporal features in large scientific data. Comput Graph Forum:775–782
Nemec M, Aftosmis M, Wintzer M (2008) Adjoint-based adaptive mesh refinement for complex geometries. In: 46th AIAA aerospace sciences meeting and exhibit, aerospace sciences meetings. American Institute of Aeronautics and Astronautics, pp 1–23
Nielsen EJ, Diskin B (2013) Discrete adjoint-based design for unsteady turbulent flows on dynamic overset unstructured grids. AIAA J 51(6):1355–1373
Ozer S, Silver D, Bemis K, Martin P (2014) Activity detection in scientific visualization. IEEE TVCG 20(3):377–390
Schlemmer M, Hotz I, Hamann B, Morr F, Hagen H (2007)Priority streamlines: a context-based visualization of flow fields. In: EuroVis, pp 227–234
Shi K, Theisel H, Hauser H, Weinkauf T, Matkovic K, Hege HC, Seidel HP (2009) Path line attributes—an information visualization approach to analyzing the dynamic behavior of 3D time-dependent flow fields. In: Topology-based methods in visualization II, mathematics and visualization, pp 75–88
Stegmaier S, Rist U, Ertl T (2005) Opening the can of worms: an exploration tool for vortical flows. In: IEEE visualization. IEEE Computer Society, Los Alamitos, CA, USA, pp 463–470
Stompel A, Lum E, Ma KL (2002) Feature-enhanced visualization of multidimensional, multivariate volume data using non-photorealistic rendering techniques. In: Pacific Graphics conference
Tao J, Wang C, Shene C, Kim SH (2014) A deformation framework for focus+context flow visualization. IEEE TVCG 20(1):42–55
Theisel H, Weinkauf T, Hege HC, Seidel HP (2003) Saddle connectors—an approach to visualizing the topological skeleton of complex 3D vector fields. In: IEEE visualization, pp 225–232
Tricoche X, Scheuermann G, Hagen H (2000) A topology simplification method for 2D vector fields. In: IEEE visualization, pp 359–366
Vanella M, Rabenold P, Balaras E (2010) A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems. J Comput Phys 229(18):6427–6449
Verma V, Kao D, Pang A (2000) A flow-guided streamline seeding strategy. In: IEEE visualization, pp 163–170
Viola I, Feixas M, Sbert M, Groller ME (2006) Importance-driven focus of attention. IEEE TVCG 12(5):933–940
Viola I, Kanitsar A, Groller ME (2004) Importance-driven volume rendering. In: IEEE visualization, pp 139–145
Wang Q (2013) Forward and adjoint sensitivity computation of chaotic dynamical systems. J Comput Phys 235:1
Wang Q, Gao JH (2013) The drag-adjoint field of a circular cylinder wake at reynolds numbers 20, 100 and 500. J Fluid Mech 730:145–161
Wang C, Yu H, Ma KL (2008) Importance-driven time-varying data visualization. IEEE TVCG 14(6):1547–1554
Yang Z, Sarkar P, Hu H (2012) Visualization of the tip vortices in a wind turbine wake. J Vis 15(1):39–44