Adhesive contact of the Weierstrass profile

L. Afferrante1, M. Ciavarella2, G. Demelio3
1L. Afferrante http://orcid.org/0000-0003-2745-1453 [email protected] Google Scholar Find this author on PubMed
2M. Ciavarella Google Scholar Find this author on PubMed
3G. Demelio Google Scholar Find this author on PubMed

Tóm tắt

The Weierstrass series was considered in Ciavarellaet al.(Ciavarellaet al.2000Proc. R. Soc. Lond. A456, 387–405. (doi:10.1098/rspa.2000.0522)) to describe a linear contact problem between a rigid fractally rough surface and an elastic half-plane. In such cases, no applied mean pressure is sufficiently large to ensure full contact, and specifically there are not even any contact areas of finite dimension. Later, Gao & Bower (Gao & Bower 2006Proc. R. Soc. A462, 319–348. (doi:10.1098/rspa.2005.1563)) introduced plasticity in the Weierstrass model, but concluded that the fractal limit continued to lead to what they considered unphysical predictions of the true contact size and number of contact spots, similar to the elastic case. In this paper, we deal with the contact problem between rough surfaces in the presence of adhesion with the assumption of a Johnson, Kendall and Roberts (JKR) regime. We find that, for fractal dimensionD>1.5, the presence of adhesion does not qualitatively modify the contact behaviour. However, for fractal dimensionD<1.5, a regularization of the contact area can be observed at a large magnification where the contact area consists of segments of finite size. Moreover, full contact can occur at all scales forD<1.5 provided the mean contact pressure is larger than a certain value. We discuss, however, the implication of our assumption of a JKR regime.

Từ khóa


Tài liệu tham khảo

10.1038/172918a0

10.1098/rspa.1957.0214

10.1098/rspa.1966.0242

10.1016/j.wear.2011.12.013

10.1063/1.1388626

10.1016/j.jmps.2011.08.004

10.1016/j.ijsolstr.2011.10.009

10.1016/j.jmps.2012.01.006

10.1016/j.triboint.2013.03.010

10.1140/epje/i2009-10508-5

10.1115/1.2920243

Majumdar A Bhushan B. 1995 Characterization and modeling of surface roughness and contact mechanics. In Handbook of micro/nano tribology pp. 109–165. New York NY: CRC Press.

Borri-Brunetto M Carpinteri A Chiaia B. 1998 Lacunarity of the contact domain between elastic bodies with rough boundaries. In Probamat-21st century: probabilities and materials (ed. G Frantziskonis) pp. 45–64. Dordrecht The Netherlands: Kluwer.

10.1098/rspa.2000.0522

10.1098/rspa.2005.1563

10.1109/22.989969

10.1126/science.1068609

10.1098/rsif.2012.0452

10.1002/mren.201300125

10.1007/s11249-013-0227-6

10.1016/S0142-9612(00)00160-5

10.1063/1.1521792

10.1088/0953-8984/17/1/R01

10.1007/s11249-014-0313-4

10.1103/PhysRevB.70.125407

10.1098/rspa.1971.0141

10.1063/1.4895789

10.1016/0020-7683(94)00111-9

Westergaard HM, 1939, Bearing pressures and cracks, J. Appl. Mech. Trans. ASME, 6, 49, 10.1115/1.4008919

10.1007/BF00536108

Weierstrass K, 1895, Mathematische werke

10.1098/rspa.1980.0044

10.1016/j.wear.2006.02.001

Wu JJ, 2012, Numerical simulation of the adhesive contact between a slightly wavy surface and a half-space, J. Adhes. Sci. Technol., 26, 331, 10.1163/016942411X576527

Jacobson N, 2009, Basic algebra 1, 2