Addressing the Influence of a Heterogeneous Matrix on Well Performance in Fractured Rocks
Tóm tắt
We address the influences of heterogeneity and complex geology of the matrix of fractured rocks on transient flow. Fractional constitutive flux laws reflect the stochastic framework that we consider. We model transient diffusion in both the matrix and fracture systems in terms of a continuous time random walk. Our procedure is particularly suited to address a complex geology that may exist on a number of scales and which may include dead ends and discontinuities. The performance of a horizontal well produced through arbitrarily located, multiple hydraulic fractures with distinct properties (length, width, permeability) forms the basis for our thesis. The pressure distribution in a rectangular drainage region where the well may be placed arbitrarily is expressed in terms of the Laplace transformation. The required solutions are obtained numerically. The focus of our work is on long-term behaviors for production at a constant pressure. In addition to numerical solutions, asymptotic results that provide information on the structure of the solutions are presented. Agreement between the asymptotic and numerical solutions is excellent. We show that long-term responses are governed by two distinct, two-parameter Mittag–Leffler functions and are an outcome of the complexities we desire to model in both the matrix and fracture systems. As a consequence, power-law behaviors that reflect the heterogeneity inherent in the system define long-time expectations. We show that the new solutions we derive do reduce to those of classical diffusion; that is, results corresponding to classical diffusion are a subset of the new results obtained here. Our results are particularly suited to model transient flow in shale reservoirs.
Tài liệu tham khảo
Anon (2009) http://www.palmertongroup.com/pdf/Marcellus_Production_Type_Curves
Apaydin, O.G., Ozkan, E., Raghavan, R.: Effect of discontinuous microfractures on ultratight matrix permeability of a dual-porosity medium. SPE Reserv. Eval. Eng. 15(4), 473–485. Society of Petroleum Engineers (2012). doi:10.2118/147391-PA
Barenblatt, G.I., Zheltov, YuP, Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)
Belayneh, M., Masihi, M., Matthäi, S. K., King, P. R.: Prediction of vein connectivity using the percolation approach: model test with field data. J. Geophys. Eng. 33, 219–229 (2006) http://stacks.iop.org/1742-2140/3/i=3/a=003
Beier, R.A.: Pressure-transient model for a vertically fractured well in a fractal reservoir. SPE Form. Eval. 9(2), 122–128 (1994). doi:10.2118/20582-PA
Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006). doi:10.1029/2005RG000178
Bisdom, K., Bertotti, G., Nick, H.M.: The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks. J. Geophys. Res. Solid Earth 121(5), 2169–9356 (2016). doi:10.1002/2015JB012657
Bisquert, J., Compte, A.: Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem. 499, 112–120 (2001)
Campos, D., Méndez, V., Fort, J.: Description of diffusive and propagative behavior on fractals. Phys. Rev. E 69, 031115 (2004)
Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)
Cacas, M.C., Daniel, J.M., Letouzey, J.: Nested geological modelling of naturally fractured reservoirs. Pet. Geosci. 7, S43–S52 (2001). doi:10.1144/petgeo.7.S.S43
Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimerá, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol. J. 6(1), 178–190 (1998)
Chen, C. C.: A Study of Naturally Fractured Reservoirs, M.S. Thesis, University of Tulsa, Tulsa, OK (1982)
Chen, C.C., Raghavan, R.: A multiply-fractured horizontal well in a rectangular drainage region. SPE J. 2(4), 455–465 (1997). doi:10.2118/37072-PA
Chen, C., Raghavan, R.: On some characteristic features of fractured-horizontal wells and conclusions drawn thereof. SPE Reserv. Eval. Eng. 16(1), 19–28 (2013). doi:10.2118/163104-PA
Chen, C., Raghavan, R.: Transient flow in a linear reservoir for space-time fractional diffusion. J. Petrol. Sci. Eng. 128, 194–202 (2015)
Chen, C.C., Serra, K., Reynolds, A.C., Raghavan, R.: Pressure transient analysis methods for bounded naturally fractured reservoirs. Soc. Petrol. Eng. J. 25(3), 451–464 (1985). doi:10.2118/11243-PA
Chen, H.Y., Poston, S.W., Raghavan, R.: An application of the product solution principle for instantaneous source and Green’s functions. SPE Form. Eval. 6(2), 161–167 (1991). doi:10.2118/20801-PA
Cinco-Ley, H., Meng, H.-Z.: Pressure transient analysis of wells with finite conductivity vertical fractures in double porosity reservoirs. Soc. Petrol. Eng. (1988). doi:10.2118/18172-MS
Dassas, Y., Duby, Y.: Diffusion toward fractal interfaces and linear sweep voltammetric techniques. J. Electrochem. Soc. 142(12), 4175–4180 (1995)
de Swaan-O, A.: Analytical solutions for determining naturally fractured reservoir properties by well testing. Soc. Pet. Eng. J. 16(3), 117–122 (1976). doi:10.2118/5346-PA
Dontsov, K.M., Boyrchuk, B.T.: Effect of characteristics of fractured media on pressure buildup behavior. Izv. Vuz Oil Gas N1, 42–46 (1971). (in Russian)
Erdelyi, A., Magnus, W. F., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. McGraw-Hill, New York, Chapter 18: Miscellaneous Functions, vol. 3, pp. 206–227 (1955)
Fomin, S., Chugunov, V., Hashida, T.: Mathematical modeling of anomalous diffusion in porous media. Fract. Differ. Calc. 1, 1–28 (2011)
Fu, L., Milliken, K.L., Sharp Jr., J.M.: Porosity and permeability variations in fractured and liesegang-banded Breathitt sandstones (Middle Pennsylvanian), eastern Kentucky: diagenetic controls and implications for modeling dual-porosity systems. J. Hydrol. 154(1–4), 351–381 (1994)
Gefen, Y., Aharony, A., Alexander, S.: Anomalous diffusion on percolating clusters. Phys. Rev. Lett. 50(1), 77–80 (1983). doi:10.1103/PhysRevLett.50.77
Gradshteyn, S., Ryzhik, I.M.: Table of Integrals Series and Products Edited by A. Jeffrey, 5th edn. Academic Press, New York (1965)
Henry, B.I., Langlands, T.A.M., Straka, P.: An introduction to fractional diffusion. In: Dewar, R.L., Detering, F. (eds.) Complex Physical, Biophysical and Econophysical Systems, p. 400. World Scientific, Hackensack (2010)
Holcombe, W.: Haynesville and Hawkville: Two World Class Shale Gas Fields, presented at the SPE Mid-Continent Meeting. Tulsa, OK (2010)
Holy, R., Albinali, A., Sarak, H., Ozkan, E.: Modelling of 1D Anomalous Diffusion in Fractured Nanoporous Media, presented at the Low Permeability Media and Nanoporous Materials From Characterization to Modeling, Can We Do Better?, Rueil-Malmaison, France. Oil & Gas Science and Technology - Rev. IFP Energies nouvelles, 71(4), (2016) doi:10.2516/ogst/2016008
Houzé, O.P., Horne, R.N., Ramey, H.J.: Pressure-transient response of an infinite-conductivity vertical fracture in a reservoir with double-porosity behavior. SPE Form. Eval. 3(3), 510–518 (1988). doi:10.2118/12778
Kang, P.K., Le Borgne, T., Dentz, M., Bour, O., Juanes, R.: Impact of velocity correlation and distribution on transport in fractured media: field evidence and theoretical model. Water Resour. Res. 51(2), 940–959 (2015). doi:10.1002/2014WR015799
Kazemi, H.: Pressure transient analysis of naturally fractured reservoirs. Trans AIME 256, 451–461 (1969)
Larsen, L., Hegre, T.M.: Pressure-Transient Behavior of Horizontal Wells with Finite-Conductivity Vertical Fractures, Paper SPE 22076, presented at the International Arctic Technology Conference, pp. 29–31. Anchorage, Alaska (1991)
Le Mẽhautẽ, A., Crepy, G.: Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ion. 1(9–10), 17–30 (1983)
Metzler, R., Glockle, W.G., Nonnenmacher, T.F.: Fractional model equation for anomalous diffusion. Phys. A 211(1), 13–24 (1994)
Molz III, F.J., Fix III, G.J., Lu, S.S.: A physical interpretation for the fractional derivative in Levy diffusion. Appl. Math. Lett. 15(7), 907–911 (2002)
Nigmatullin, R.R.: To the theoretical explanation of the universal response. Phys. Status Solidi B Basic Res. 123(2), 739–745 (1984)
Ozkan, E., Ohaeri, U., Raghavan, R.: Unsteady flow to a well produced at a constant pressure in a fractured reservoir. SPE Form. Eval. 2(2), 186–200 (1987). doi:10.2118/9902-PA
Ozkan, E., Raghavan, R.: Performance of horizontal wells subject to bottomwater drive. SPE Reserv. Eng. 5(3), 375–383 (1990). doi:10.2118/18559-PA
Ozkan, E., Raghavan, R.: New solutions to solve problems in well test analysis: I-analytical considerations. SPE Form. Eval. 6(3), 359–368 (1991a). doi:10.2118/18615-PA
Ozkan, E., Raghavan, R.: New solutions to solve problems in well test analysis: II-analytical considerations. SPE Form. Eval. 6(3), 369–378 (1991b). doi:10.2118/18616-PA
Ozkan, E., Raghavan, R.: New Solutions for Well-Test-Analysis Problems: Part III-Additional Algorithms, SPE Annual Technical Conference and Exhibition, 25–28 September. New Orleans, Louisiana. (1994). doi:10.2118/28424-MS
Ozkan, E., Raghavan, R.: A computationally efficient transient-pressure solution for inclined wells. SPE Reserv. Eval. Eng. 3(5), 414–425 (2000). doi:10.2118/66206-PA
Povstenko, Y.: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, Birkhäuser (2015)
Pruess, K., Narasimhan, T.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25(01), 14–26 (1985). doi:10.2118/10509-PA
Raghavan, R.: Well Test Analysis. Prentice Hall, Englewoods Cliffs (1993)
Raghavan, R.: A note on the drawdown, diffusive behavior of fractured rocks. Water Resour. Res. 45(2), W02502 (2008)
Raghavan, R.: Fractional derivatives: application to transient flow. J. Pet. Sci. Eng. 80, 7–13 (2011)
Raghavan, R.: Fractional diffusion: performance of fractured wells. J. Pet. Sci. Eng. 92–93, 167–173 (2012)
Raghavan, R., Chen, C.: Fractional diffusion in rocks produced by horizontal wells with multiple, transverse hydraulic fractures of finite conductivity. J. Pet. Sci. Eng. 109, 133–143 (2013)
Raghavan, R., Chen, C.: Fractured-well performance under anomalous diffusion. SPE Res. Eval. Eng. 16(3), 237–245 (2013b). doi:10.2118/165584-PA
Raghavan, R., Chen, C.: Anomalous subdiffusion to a horizontal well by a subordinator. Transp. Porous. Med. 107, 387–401 (2015). doi:10.1007/s11242-014-0444-y
Raghavan, R., Chen, C.: Rate Decline, Power Laws and Subdiffusion in Fractured Rocks. SPE Res. Eval. Eng. (2016, to appear)
Raghavan, R., Ozkan, E.: A method for computing unsteady flows in porous media, Pitman research notes in mathematics series \((318)\). Harlow, Longman Scientific & Technical (1994)
Raghavan, R., Ozkan, E.: Flow in composite slabs. SPE J. 16(2), 374–387 (2011). doi:10.2118/140748-PA
Raghavan, R., Ohaeri, C.U.: Unsteady flow to a well produced at constant pressure in a fractured reservoir. Petrol. Eng. Soc. (1981). doi:10.2118/9902-MS
Raghavan, R., Uraiet, A., Thomas, G.W.: Vertical fracture height: effect on transient flow behavior. Soc. Petrol. Eng. J. 18(4), 265–277 (1978). doi:10.2118/6016-PA
Raghavan, R., Chen, C., Agarwal, B.: An analysis of horizontal wells intercepted by multiple fractures. SPE J. 2(3), 235–245 (1997). doi:10.2118/27652-PA
Reiss, L. H.: The Reservoir Engineering Aspects of Fractured Formations, Editions TECHNIP (1980)
Russian, A., Gouze, P., Dentz, M., Gringarten, A.: Multi-continuum approach to modelling shale gas extraction. Transp. Porous Media 109(1), 109–130 (2015)
Sharp Jr., J.M., Kreisel, I., Milliken, K.L., Mace, R.E., Robinson, N.I.: Fracture skin properties and effects on solute transport: geotechnical and environmental implications. Tools and techniques. In: Aubertin, M., Hassam, F., Mitri, H. (eds.) Rock Mechanics. Balkema, Rotterdam (1996)
Shlesinger, M.F.: Asymptotic solutions of continuous-time random walks. J. Stat. Phys. 10(5), 421–434 (1974)
Smith, L., Schwartz, F.W.: An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resour. Res. 20(9), 1241–1252 (1984). doi:10.1029/WR020i009p01241
Stehfest, H.: Algorithm 368: Numerical inversion of Laplace transforms [D5]. Commun. ACM 13(1), 47–49 (1970a)
Stehfest, H.: Remark on algorithm 368: Numerical inversion of Laplace transforms. Commun. ACM 13(10), 624 (1970b)
Torcuk, M.A., Kurtoglu, B., Alharthy, N., Kazemi, H.: Analytical Solutions for Multiple Matrix in Fractured Reservoirs: Application to Conventional and Unconventional Reservoirs, SPE Formation Evaluation & Engineering, 18(5), 969–981. Society of Petroleum Engineers (2013). doi:10.2118/164528-PA
Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers Volume I Background and Theory. Springer, New York (2013)
Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3(3), 245–255 (1963). doi:10.2118/426-PA
Yeh, N.S., Davison, M.J., Raghavan, R.: Fractured well responses in heterogeneous systems-application to devonian shale and austin chalk reservoirs. ASME J. Energy Resour. Technol. 108(2), 120–130 (1986). doi:10.1115/1.3231251
Yu, W., Al-Shalabi, E.W., Sepehrnoori, K.: A sensitivity study of potential CO\(_2\) injection for enhanced gas recovery in Barnett shale reservoirs. Soc. Petrol. Eng. (2014). doi:10.2118/169012-MS