Addressing Unmet Clinical Needs with 3D Printing Technologies

Advanced healthcare materials - Tập 7 Số 17 - 2018
Udayan Ghosh1, Ning Shen2, Yuzhu Wang1, Yong Lin Kong1
1Department of Mechanical Engineering, University of Utah, 1495 E. 100 S., 1550 MEK, Salt Lake City, UT 84112, USA
2Boston University School of Medicine, Boston University, 72 E Concord St, Boston, MA, 02118 USA

Tóm tắt

Abstract

Recent advances in 3D printing have enabled the creation of novel 3D constructs and devices with an unprecedented level of complexity, properties, and functionalities. In contrast to manufacturing techniques developed for mass production, 3D printing encompasses a broad class of fabrication technologies that can enable 1) the creation of highly customized and optimized 3D physical architectures from digital designs; 2) the synergistic integration of properties and functionalities of distinct classes of materials to create novel hybrid devices; and 3) a biocompatible fabrication approach that facilitates the creation and cointegration of biological constructs and systems. This progress report describes how these capabilities can potentially address a myriad of unmet clinical needs. First, the creation of 3D‐printed prosthetics to regain lost functionalities by providing structural support for skeletal and tubular organs is highlighted. Second, novel drug delivery strategies aided by 3D‐printed devices are described. Third, the advancement of medical research heralded by 3D‐printed tissue/organ‐on‐chips systems is discussed. Fourth, the developments of 3D‐printed tissue and organ regeneration are explored. Finally, the potential for seamless integration of engineered organs with active devices by leveraging the versatility of multimaterial 3D printing is envisioned.

Từ khóa


Tài liệu tham khảo

10.1038/nature08188

10.1111/j.1445-2197.2007.04330.x

10.1098/rspb.2011.1194

U. S. FDA Hip Implants May2018 https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/MetalonMetalHipImplants/ucm241594.htm.

10.5301/hipint.5000294

Ford S. L., 2014, J. Int. Commer. Econ., 6, 40

E. M.Sachs J. S.Haggerty M. J.Cima P. A.Williams US Patent 5204055A 1993.

10.1201/b18893

10.1038/nature21003

10.1108/13552540710776197

10.1016/j.techfore.2015.07.025

10.1038/lsa.2012.6

10.1126/science.aaa2397

10.1016/j.nano.2015.09.010

10.1126/scitranslmed.3010825

10.1111/j.1744-7402.2007.02115.x

10.1088/1758-5090/7/4/045001

10.1016/j.biomaterials.2016.09.003

10.1088/1758-5082/6/3/035001

10.1002/adfm.201501760

10.1126/science.1261689

10.1038/nbt.3415

10.1038/nature12083

10.1126/science.1206157

10.1126/science.aaa9306

10.1021/nl4007744

10.1038/nmat4782

10.1557/mrs.2015.235

10.1063/1.1136492

C. W.Hull US Patent 4575330A 1986.

J. J.Beaman C. R.Deckard US Patent 4938816A 1990.

10.1002/adma.200300385

10.1146/annurev-matsci-070909-104502

10.1002/adfm.200600434

10.1002/smtd.201700277

10.1016/j.biomaterials.2010.04.050

10.1016/j.sna.2004.12.011

10.1063/1.4769050

10.1038/17989

10.1186/1746-160X-10-45

10.1002/admt.201600138

10.1088/1758-5090/9/1/015010

10.1002/adma.201800242

10.1016/j.jphotochem.2006.03.004

10.1002/lpor.200810027

10.1039/b902159k

10.1002/adfm.201202666

10.1002/adma.200801319

10.1364/BOE.2.003167

10.1371/journal.pone.0147399

10.1056/NEJMc1206319

10.1016/j.ijscr.2015.02.037

10.1093/ejcts/ezv265

ASTM International, 2012, Standard Terminology for Additive Manufacturing Technologies

10.1021/cm0101632

10.1016/j.jconrel.2011.07.033

10.1186/s41205-016-0005-9

Voelker R., 2015, JAMA, J. Am. Med. Assoc., 314, 1108

10.1038/s41467-017-00763-6

10.1136/bjophthalmol-2016-308399

S. S.Crump US Patent 5121329A 1992.

Novakova‐Marcincinova L., 2012, Manuf. and Ind. Eng., 11, 24

10.1021/acs.molpharmaceut.5b00510

10.1016/j.ijpharm.2014.09.044

10.1016/j.ijpharm.2015.04.069

10.1039/C8LC00098K

10.1039/C4AN01612B

Comotti C., 2015, Proc. of the 3rd 2015 Workshop on ICTs for Improving Patients Rehabilitation Research Techniques

10.1186/s13104-015-0971-9

10.1002/adma.201305506

10.1002/adma.201004625

10.1002/adma.200400481

10.1038/nmat4544

10.1088/1758-5082/4/3/035005

Liu W., 2017, Adv. Mater., 29

Childress D. S., 1985, Clin. Prosthet. Orthot., 9, 2

10.1007/BF02584556

10.1016/j.jhsa.2016.02.008

Saharan L., 2016, Proc. SPIE, 9797, 97970V, 10.1117/12.2219535

10.1016/j.jbiomech.2015.02.048

Slade P., 2015, 2015 IEEE Int. Conf. on Robotics and Automation (ICRA)

10.1177/1758998314544802

10.3389/fnins.2016.00209

MacBarb R. F., 2017, Int. J. Spine Surg., 11, 116

10.3109/10929088.2015.1076039

Jehring A., 2018, The SUN

10.3389/fsurg.2015.00025

10.1080/00015458.2014.11681006

10.1186/1746-160X-10-14

10.1007/s12541-015-0134-x

Mikołajewska E., 2014, J. Health Sci., 4, 78

10.1108/13552541111156513

10.1177/0309364616640947

10.1001/jama.2015.17705

10.1186/s12938-016-0236-4

10.7736/KSPE.2014.31.12.1067

10.1080/17483107.2016.1253117

10.1097/01.prs.0000436844.92623.d3

10.1097/SAP.0000000000000671

Schmidt R., 2015, SIGGRAPH 2015: Studio

10.1097/01.prs.0000479977.37428.8e

10.3928/01477447-20151016-05

10.4103/2231-0746.133065

10.1378/chest.127.3.984

10.1177/000348949210100403

10.1016/j.matlet.2014.11.119

10.1016/j.biomaterials.2004.01.037

10.1007/s10856-010-4048-y

10.1161/01.CIR.92.5.1355

10.1161/01.STR.0000058160.53040.5F

E.Alt T.Fliedner R.Alter A.Stemberger US Patent 5843117A 1998.

10.1126/scirobotics.aah6451

10.1016/S0169-409X(00)00129-0

10.1038/483531a

10.1016/j.addr.2006.07.027

10.1002/aic.690480602

10.4103/2230-973X.96920

10.3109/03639045.2015.1120743

10.1016/j.molmed.2016.01.003

10.1208/s12249-016-0704-y

10.1016/j.ijpharm.2015.12.071

10.2174/1381612821666150115154059

10.1331/JAPhA.2013.12217

10.1007/s11095-016-1933-1

10.1056/NEJMp1006304

10.1001/jama.2014.9542

10.1007/s00170-007-1308-1

10.1016/j.addr.2016.03.001

Ventola C. L., 2014, Pharmacol. Ther., 39, 704

10.1002/jps.21284

10.1126/scitranslmed.aag2374

10.1038/519S19a

10.1063/1.1884265

Biswas S., 2010, Appl. Phys. Lett., 96, 125

10.1002/adfm.201303983

Sabaté E., 2003, Adherence to Long‐Term Therapies: Evidence for Action

10.1126/sciadv.aat2544

10.1016/j.janxdis.2006.01.004

10.3109/10717541003667798

10.1021/js980042

10.1038/nprot.2016.041

10.1089/3dp.2015.0039

10.1016/j.tibtech.2016.03.004

10.1038/ncomms9643

10.1038/srep31110

10.1038/442367a

10.1039/C5LC00685F

10.1039/b403341h

10.1146/annurev.bioeng.4.112601.125916

10.1002/adma.201800001

10.1039/C6LC00163G

10.1038/srep34845

10.1088/1758-5090/8/1/014101

10.1039/C5LC01270H

10.1073/pnas.1414484111

10.1016/j.proche.2009.07.092

10.1016/j.biomaterials.2010.11.047

10.1073/pnas.1324214111

10.1016/j.biomaterials.2015.07.022

10.1038/nrc1279

10.4172/1948-5956.100000e2

10.1158/0008-5472.CAN-07-6611

10.1146/annurev-bioeng-071813-105259

10.1007/s10544-013-9812-6

10.1002/biot.201000340

10.1016/j.tibtech.2015.06.007

10.1088/1758-5090/8/2/022001

10.1016/j.ebiom.2018.01.011

10.1002/jbm.b.33186

10.1016/j.actbio.2013.12.005

10.1002/ar.1113

10.1016/j.biomaterials.2015.05.043

10.3390/polym8010019

10.18063/IJB.2016.01.009

10.1007/s002160100962

10.1038/nbt.3413

10.1088/1758-5090/8/1/015007

10.1038/ncomms15261

10.1038/s41467-018-03391-w

10.1088/1468-6996/16/3/033502

10.1038/nbt.2958

10.1016/j.copbio.2016.03.014

10.1002/adhm.201500168

10.1136/bjophthalmol-2013-304446

10.1007/s12013-016-0730-0

10.1186/s13036-015-0001-4

10.1002/anie.201505062

10.1007/s10439-016-1607-5

10.1089/ten.teb.2015.0464

10.1088/1758-5090/8/1/014103

10.1007/s10439-016-1638-y

10.1007/s10439-016-1612-8

10.1088/1748-6041/10/3/034002

10.1146/annurev-bioeng-071813-105155

10.1155/2014/829145

10.1016/j.jcmg.2016.12.001

10.1021/acsbiomaterials.6b00121

10.1557/mrs.2015.3

10.1016/j.biotechadv.2015.12.011

10.18063/ijb.v4i1.126

10.1007/s12013-015-0531-x

10.1038/nprot.2016.123

10.15302/J-ENG-2015061

10.1039/C5TB00393H

10.1002/adhm.201600435

10.1016/j.compositesb.2016.11.034

10.1038/nmat1891

10.1038/nmat2745

10.1038/am.2012.27

10.1002/adma.201401642

10.1016/j.nantod.2016.04.007

10.1126/science.1168375

10.1126/science.1121401

10.1002/adma.200902927

10.1002/adma.201703817

10.1002/adma.201707495

10.1002/admt.201700235

10.1021/nl401070p

10.1016/j.bios.2010.12.042

10.1016/j.tibtech.2014.04.005

10.1021/nl5033292

10.1126/science.aab2750

10.1002/ase.1475

10.1002/lt.23729

10.1088/1758-5082/2/1/014101

10.1016/j.dental.2015.09.018

10.1016/j.tripleo.2009.05.023

BioArchitects World's First 3D‐Printed Titanium Cranial Implant Cleared By FDA May2018 https://bioarchitects.com/en/worlds‐first‐3d‐printed‐titanium‐cranial‐implant‐cleared‐by‐fda/.

10.1038/s41578-018-0002-2

10.1039/C5TB01468A

10.1002/adhm.201701161

10.1126/sciadv.aao5496

10.1088/0960-1317/22/8/085014

10.1002/biot.200600081

A. B.Varotsis Introduction to Binder Jetting 3D Printing https://www.3dhubs.com/knowledge‐base/introduction‐binder‐jetting‐3d‐printing(accessed: 23 May2018).

10.1016/j.buildenv.2015.07.013

10.1039/C005374K

10.1016/j.actbio.2010.10.023

10.1021/la803803m

10.1016/j.apsusc.2007.01.062

10.1016/j.tips.2018.02.006

10.1211/jpp.61.03.0006

J.Jacob N.Coyle D. C.Monkhouse H. L.Surprenant N. B.Jain US Patent 9669009B2 2017.