Sản xuất bổ sung các giàn giáo sinh học hydroxyapatite: Phân tán, xử lý ánh sáng kỹ thuật số, thiêu kết, tính chất cơ học và tính tương thích sinh học

Journal of Advanced Ceramics - Tập 9 Số 3 - Trang 360-373 - 2020
Chengwei Feng1, Keqiang Zhang1, Rujie He1, Guojiao Ding1, Min Xia2, Xinxin Jin3, Chen Xie4
1Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
2School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
3School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
4Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China

Tóm tắt

Tóm tắt

Các giàn giáo sinh học hydroxyapatite (HA) đã được chế tạo bằng cách sử dụng công nghệ sản xuất bổ sung dựa trên xử lý ánh sáng kỹ thuật số (DLP). Các vấn đề chính liên quan đến các giàn giáo sinh học HA, bao gồm phân tán, chế tạo DLP, thiêu kết, tính chất cơ học và tính tương thích sinh học đã được thảo luận một cách chi tiết. Đầu tiên, tác động của liều lượng chất phân tán, tỷ lệ khối rắn và nhiệt độ thiêu kết đã được nghiên cứu. Liều lượng chất phân tán tối ưu, tỷ lệ khối rắn và nhiệt độ thiêu kết lần lượt là 2 wt%, 50 vol% và 1250 °C. Sau đó, tính chất cơ học và tính tương thích sinh học của các giàn giáo sinh học HA đã được điều tra. Giàn giáo sinh học HA xốp được chuẩn bị bằng DLP được phát hiện có tính chất cơ học và hành vi phân hủy xuất sắc. Từ nghiên cứu này, kỹ thuật DLP cho thấy tiềm năng tốt trong sản xuất các giàn giáo sinh học HA.

Từ khóa

#Hydroxyapatite #giàn giáo sinh học #sản xuất bổ sung #xử lý ánh sáng kỹ thuật số #thiêu kết #tính chất cơ học #tính tương thích sinh học

Tài liệu tham khảo

Fu SY, Zhu M, Zhu YF. Organosilicon polymer-derived ceramics: An overview. J Adv Ceram 2019, 8: 457–478.

Wu Z, Zhou ZR, Hong YL. Isotropic freeze casting of through-porous hydroxyapatite ceramics. J Adv Ceram 2019, 8: 256–264.

Witek L, Shi Y, Smay J. Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: An in vitro study. J Adv Ceram 2017, 6: 157–164.

Shen TT, Yang WH, Shen XK, et al. Polydopamine-assisted hydroxyapatite and lactoferrin multilayer on titanium for regulating bone balance and enhancing antibacterial property. ACS Biomater Sci Eng 2018, 4: 3211–3223.

Ramay HR, Zhang MQ. Preparation of porous hydr-oxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials 2003, 24: 3293–3302.

Lee EJ, Koh YH, Yoon BH, et al. Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Mater Lett 2007, 61: 2270–2273.

Yang T, Lee JM, Yoon SY, et al. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. J Mater Sci: Mater Med 2010, 21: 1495–1502.

Yan S, Huang YF, Zhao DK, et al. 3D printing of nano-scale Al2O3-ZrO2 eutectic ceramic: Principle analysis and process optimization of pores. Addit Manuf 2019, 28: 120–126.

Chen ZW, Li ZY, Li JJ, et al. 3D printing of ceramics: A review. J Eur Ceram Soc 2019, 39: 661–687.

Cheng ZL, Ye F, Liu YS, et al. Mechanical and dielectric properties of porous and wave-transparent Si3N4-Si3N4 composite ceramics fabricated by 3D printing combined with chemical vapor infiltration. J Adv Ceram 2019, 8: 399–407.

Du XY, Fu SY, Zhu YF. 3D printing of ceramic-based scaffolds for bone tissue engineering: An overview. J Mater Chem B 2018, 6: 4397–4412.

Tan KH, Chua CK, Leong KF, et al. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 2003, 24: 3115–3123.

Hao L, Dadbakhsh S, Seaman O, et al. Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. J Mater Process Technol 2009, 209: 5793–5801.

Xu N, Ye XJ, Wei DX, et al. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Interfaces 2014, 6: 14952–14963.

Wei QH, Wang YN, Chai WH, et al. Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds. Ceram Int 2017, 43: 13702–13709.

Vorndran E, Moseke C, Gbureck U. 3D printing of ceramic implants. MRS Bull 2015, 40: 127–136.

Brunello G, Sivolella S, Meneghello R, et al. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 2016, 34: 740–753.

Fu S, Hu HR, Chen JJ, et al. Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration. Chem Eng J 2020, 382: 122928.

Fu S, Yu B, Ding HF, et al. Zirconia incorporation in 3D printed β-Ca2SiO4 scaffolds on their physicochemical and biological property. J Inorg Mater 2019, 34: 444.

Du XY, Wei DX, Huang L, et al. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Mater Sci Eng: C 2019, 103: 109731.

Shao H, He JZ, Lin T, et al. 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceram Int 2019, 45: 1163–1170.

Sun L, Parker ST, Syoji D, et al. Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone Co-cultures. Adv Healthc Mater 2012, 1: 729–735.

Shao HF, Yang XY, He Y, et al. Bioactive glass-reinforced bioceramic ink writing scaffolds: Sintering, microstructure and mechanical behavior. Biofabrication 2015, 7: 035010.

Simon JL, Michna S, Lewis JA, et al. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res 2007, 83A: 747–758.

Ronca A, Ambrosio L, Grijpma DW. Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater 2013, 9: 5989–5996.

Skoog SA, Goering PL, Narayan RJ. Stereolithography in tissue engineering. J Mater Sci: Mater Med 2014, 25: 845–856.

Wang Z, Huang CZ, Wang J, et al. Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceram Int 2019, 45: 3902–3909.

Lasgorceix M, Champion E, Chartier T. Shaping by microstereolithography and sintering of macro-micro-porous silicon substituted hydroxyapatite. J Eur Ceram Soc 2016, 36: 1091–1101.

Chen QH, Zou B, Lai QG, et al. A study on biosafety of HAP ceramic prepared by SLA-3D printing technology directly. J Mech Behav Biomed Mater 2019, 98: 327–335.

Putlyaev VI, Evdokimov PV, Safronova TV, et al. Fabrication of osteoconductive Ca3-xM2x(PO4)2 (M = Na, K) calcium phosphate bioceramics by stereolithographic 3D printing. Inorg Mater 2017, 53: 529–535.

Wang M, Xie C, He RJ, et al. Polymer-derived silicon nitride ceramics by digital light processing based additive manufacturing. J Am Ceram Soc 2019, 102: 5117–5126.

Liu ZB, Liang HX, Shi TS, et al. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram Int 2019, 45: 11079–11086.

Zeng Y, Yan YZ, Yan HF, et al. 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing. J Mater Sci 2018, 53: 6291–6301.

Lee YH, Lee JB, Maeng WY, et al. Photocurable ceramic slurry using solid camphor as novel diluent for conventional digital light processing (DLP) process. J Eur Ceram Soc 2019, 39: 4358–4365.

He RX, Liu W, Wu ZW, et al. Fabrication of complex-shaped zirconia ceramic parts via a DLP- stereoli-thography-based 3D printing method. Ceram Int 2018, 44: 3412–3416.

Karalekas D, Aggelopoulos A. Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin. J Mater Process Technol 2003, 136: 146–150.

Wang WL, Cheah CM, Fuh JYH, et al. Influence of process parameters on stereolithography part shrinkage. Mater Des 1996, 17: 205–213.

Xing HY, Zou B, Li SS, et al. Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography. Ceram Int 2017, 43: 16340–16347.

Schwentenwein M, Homa J. Additive manufacturing of dense alumina ceramics. Int J Appl Ceram Technol 2015, 12: 1–7.

Zhang KQ, He RJ, Ding GJ, et al. Digital light processing of 3Y-TZP strengthened ZrO2 ceramics. Mater Sci Eng: A 2020, 774: 138768.

Qu HW, Fu HY, Han ZY, et al. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv 2019, 9: 26252–26262.

Yang YW, Wang GY, Liang HX, et al. Additive manufacturing of bone scaffolds. Int J Bioprint 2019, 5: 148–172.

Lin SJ, LeGeros RZ, Rohanizadeh R, et al. Biphasic calcium phosphate (BCP) bioceramics: Preparation and properties. Key Eng Mater 2003, 240-242: 473–476.

Zhao HX, Liang WH. A novel comby scaffold with improved mechanical strength for bone tissue engineering. Mater Lett 2017, 194: 220–223.