Additive manufacturing of Ti-6Al-4V alloy by metal fused filament fabrication (MF3): producing parts comparable to that of metal injection molding
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gonzalez-Gutierrez J, Cano S, Schuschnigg S, Kukla C, Sapkota J, Holzer C (2018) Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials 11(5):840. https://doi.org/10.3390/ma11050840
Thompson Y, Gonzalez-Gutierrez J, Kukla C, Felfer P (2019) Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Addit Manuf 30:100861. https://doi.org/10.1016/j.addma.2019.100861
Agarwala M, Weeren RV, Bandyopadhyay A, Safari A, Danforth S, Priedeman W (1996) Filament feed materials for fused deposition processing of ceramics and metals. In: 1996 International solid freeform fabrication symposium
Agarwala M, Weeren RV, Bandyopadhyay A, Whalen P, Safari A, Danforth S (1996) Fused deposition of ceramics and metals: an overview. In: 1996 international solid freeform fabrication symposium
Agarwala MK, Jamalabad VR, Langrana NA, Safari A, Whalen PJ, Danforth SC (1996) Structural quality of parts processed by fused deposition. Rapid Prototyp J 2(4):4–19. https://doi.org/10.1108/13552549610732034
Rangarajan S, Qi G, Venkataraman N, Safari A, Danforth SC (2000) Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics. J Am Ceram Soc 83(7):1663–1669. https://doi.org/10.1111/j.1151-2916.2000.tb01446.x
Wu G, Langrana NA, Sadanji R, Danforth S (2002) Solid freeform fabrication of metal components using fused deposition of metals. Mater Des 23(1):97–105. https://doi.org/10.1016/S0261-3069(01)00079-6
Bose A, Schuh CA, Tobia JC, Tuncer N, Mykulowycz NM, Preston A, Barbati AC, Kernan B, Gibson MA, Krause D (2018) Traditional and additive manufacturing of a new tungsten heavy alloy alternative. Int J Refract Met Hard Mater 73:22–28. https://doi.org/10.1016/j.ijrmhm.2018.01.019
Gonzalez-Gutierrez J, Arbeiter F, Schlauf T, Kukla C, Holzer C (2019) Tensile properties of sintered 17–4PH stainless steel fabricated by material extrusion additive manufacturing. Mater Lett 248:165–168. https://doi.org/10.1016/j.matlet.2019.04.024
Markforged. Metal 3D Printing. https://markforged.com/. Accessed 11 July 2020.
Desktop Metal. Metal 3D Printing. https://www.desktopmetal.com/. Accessed 11 July 2020.
Lengauer W, Duretek I, Fürst M, Schwarz V, Gonzalez-Gutierrez J, Schuschnigg S, Kukla C, Kitzmantel M, Neubauer E, Lieberwirth C (2019) Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. Int J Refract Met Hard Mater 82:141–149. https://doi.org/10.1016/j.ijrmhm.2019.04.011
Damon J, Dietrich S, Gorantla S, Popp U, Okolo B, Schulze V (2019) Process porosity and mechanical performance of fused filament fabricated 316L stainless steel. Rapid Prototyp J 25(7):1319–1327. https://doi.org/10.1108/RPJ-01-2019-0002
Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552. https://doi.org/10.1016/j.matdes.2018.107552
DebRoy T, Wei H, Zuback J, Mukherjee T, Elmer J, Milewski J, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components–process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001
Kok Y, Tan XP, Wang P, Nai M, Loh NH, Liu E, Tor SB (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 139:565–586. https://doi.org/10.1016/j.matdes.2017.11.021
Zhang Y, Bai S, Riede M, Garratt E, Roch A (2020) A comprehensive study on fused filament fabrication of Ti-6Al-4V structures. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101256
Ergül E, Özkan Gülsoy H, Günay V (2009) Effect of sintering parameters on mechanical properties of injection moulded Ti–6Al–4V alloys. Powder Metall 52(1):5–71. https://doi.org/10.1179/174329008X271691
Nor NM, Muhamad N, Ihsan AM, Jamaludin K (2013) Sintering parameter optimization of Ti-6Al-4V metal injection molding for highest strength using palm stearin binder. Proc Eng 68:359–364. https://doi.org/10.1016/j.proeng.2013.12.192
Obasi G, Ferri O, Ebel T, Bormann R (2010) Influence of processing parameters on mechanical properties of Ti–6Al–4V alloy fabricated by MIM. Mater Sci Eng A 527(16–17):3929–3935. https://doi.org/10.1016/j.msea.2010.02.070
Shibo G, Xuanhui Q, Xinbo H, Ting Z, Bohua D (2006) Powder injection molding of Ti–6Al–4V alloy. J Mater Process Technol 173(3):310–314. https://doi.org/10.1016/j.jmatprotec.2005.12.001
Sidambe A, Figueroa I, Hamilton H, Todd I (2010) Metal injection moulding of Ti-64 components using a water soluble binder. PIM Int 4(4):56–62
Qiu C, Adkins NJ, Attallah MM (2010) Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng A 578:230–239. https://doi.org/10.1016/j.msea.2013.04.099
Rafi H, Karthik N, Gong H, Starr TL, Stucker BE (2013) Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform 22(12):3872–3883. https://doi.org/10.1007/s11665-013-0658-0
Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J Alloy Compd 541:177–185. https://doi.org/10.1016/j.jallcom.2012.07.022
Wysocki B, Maj P, Sitek R, Buhagiar J, Kurzydłowski KJ, Święszkowski W (2017) Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Appl Sci 7(7):657. https://doi.org/10.3390/app7070657
Anderegg DA, Bryant HA, Ruffin DC, Skrip SM Jr, Fallon JJ, Gilmer EL, Bortner MJ (2019) In-situ monitoring of polymer flow temperature and pressure in extrusion based additive manufacturing. Addit Manuf 26:76–83. https://doi.org/10.1016/j.addma.2019.01.002
Singh P, Balla VK, Tofangchi A, Atre SV, Kate KH (2020) Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3). Int J Refract Met Hard Mater. https://doi.org/10.1016/j.ijrmhm.2020.105249
Wang J, Xie H, Weng Z, Senthil T, Wu L (2016) A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Mater Des 105:152–159. https://doi.org/10.1016/j.matdes.2016.05.078
Guan HW, Savalani MM, Gibson I, Diegel O (2015) Influence of fill gap on flexural strength of parts fabricated by curved layer fused deposition modeling. Proc Technol 20:243–248. https://doi.org/10.1016/j.protcy.2015.07.039
Ziemian S, Okwara M, Ziemian CW (2015) Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp J 21(3):270–278. https://doi.org/10.1108/RPJ-09-2013-0086
Ramanath H, Chua C, Leong K, Shah K (2008) Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling. J Mater Sci Mater Med 19(7):2541–2550. https://doi.org/10.1007/s10856-007-3203-6
Gurrala PK, Regalla SP (2014) Part strength evolution with bonding between filaments in fused deposition modelling: this paper studies how coalescence of filaments contributes to the strength of final FDM part. Virtual Phys Prototyp. https://doi.org/10.1080/17452759.2014.913400.9(3):141-149
German R (2014) Sintering: from empirical observations to scientific principles. Butterworth-Heinemann, Oxford
Zauner R, Binet C, Heaney D, Piemme J (2004) Variability of feedstock viscosity and its correlation with dimensional variability of green powder injection moulded components. Powder Metall 47(2):150–155. https://doi.org/10.1179/003258904225015473
Jamaludin MI, Kasim NAA, Nor NHM, Ismail MH (2015) Development of porous Ti-6Al-4V Mix with palm stearin binder by metal injection molding technique. Am J Appl Sci 12(10):742. https://doi.org/10.3844/ajassp.2015.742.751
Contreras J, Jimenez-Morales A, Torralba J (2010) Experimental and theoretical methods for optimal solids loading calculation in MIM feedstocks fabricated from powders with different particle characteristics. Powder Metall 53(1):34–40. https://doi.org/10.1179/003258909X12450768327225
German RM, Bose A (1997) Injection molding of metals and ceramics. Metal Powder Industries Federation, Princeton
Gilmer EL, Miller D, Chatham CA, Zawaski C, Fallon JJ, Pekkanen A, Long TE, Williams CB, Bortner MJ (2018) Model analysis of feedstock behavior in fused filament fabrication: enabling rapid materials screening. Polymer 152:51–61. https://doi.org/10.1016/j.polymer.2017.11.068
Supati R, Loh N, Khor K, Tor S (2000) Mixing and characterization of feedstock for powder injection molding. Mater Lett 46(2–3):109–114. https://doi.org/10.1016/S0167-577X(00)00151-8
Turner BN, Gold SA (2015) A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp J 21(3):250–261. https://doi.org/10.1108/RPJ-02-2013-0017
Singh P, Shaikh Q, Balla VK, Atre SV, Kate KH (2020) Estimating powder-polymer material properties used in design for metal fused filament fabrication (DfMF3). JOM 72(1):485–495. https://doi.org/10.1007/s11837-019-03920-y
Abbott A, Tandon G, Bradford R, Koerner H, Baur J (2018) Process-structure-property effects on ABS bond strength in fused filament fabrication. Addit Manuf 19:29–38. https://doi.org/10.1016/j.addma.2017.11.002
Kuznetsov V, Solonin A, Urzhumtsev O, Schilling R, Tavitov A (2018) Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers 10(3):313. https://doi.org/10.3390/polym10030313
Sun Q, Rizvi G, Bellehumeur C, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14(2):72–80. https://doi.org/10.1108/13552540810862028
Ebel T, Ferri OM, Limberg W, Schimansky F-P (2011) Metal injection moulding of advanced titanium alloys. Adv Powder Metall Part Mater 1:45–57
Murr L, Quinones S, Gaytan S, Lopez M, Rodela A, Martinez E, Hernandez D, Martinez E, Medina F, Wicker R (2009) Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20–32. https://doi.org/10.1016/j.jmbbm.2008.05.004
German R (2009) Titanium powder injection moulding: a review of the current status of materials, processing, properties and applications. PIM Int 3(4):21–37