Adaptive visual tracking using the prioritized Q-learning algorithm: MDP-based parameter learning approach
Tài liệu tham khảo
Yilmaz, 2006, Object tracking: a survey, ACM Comput. Surv., 38, 10.1145/1177352.1177355
Leibe, 2008, Coupled object detection and tracking from static cameras and moving vehicles, IEEE Trans. Pattern Anal. Mach. Intell., 30, 1683, 10.1109/TPAMI.2008.170
Salti, 2012, Adaptive appearance modeling for video tracking: survey and evaluation, IEEE Trans. Image Process., 21, 4334, 10.1109/TIP.2012.2206035
Grabner, 2010, Tracking the invisible: learning where the object might be
Yang, 2009, Context-aware visual tracking, IEEE Trans. Pattern Anal. Mach. Intell., 31, 1195, 10.1109/TPAMI.2008.146
Matthews, 2004, The template update problem, IEEE Trans. Pattern Anal. Mach. Intell., 26, 810, 10.1109/TPAMI.2004.16
Rahimi, 2008, Reducing drift in differential tracking, Comput. Vis. Image Underst., 109, 97, 10.1016/j.cviu.2006.12.004
Shi, 1994, Good features to track
Ross, 2007, Incremental learning for robust visual tracking, Int. J. Comput. Vis., 77, 125
Jepson, 2003, Robust online appearance models for visual tracking, IEEE Trans. Pattern Anal. Mach. Intell., 25, 1296, 10.1109/TPAMI.2003.1233903
Kwon, 2009, Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo Sampling, 1208
Zhou, 2004, Visual tracking and recognition using appearance-adaptive models in particle filters, IEEE Trans. Image Process., 13, 1491, 10.1109/TIP.2004.836152
Collins, 2005, Online selection of discriminative tracking features, IEEE Trans. Pattern Anal. Mach. Intell., 27, 1631, 10.1109/TPAMI.2005.205
Avidan, 2007, Ensemble tracking, IEEE Trans. Pattern Anal. Mach. Intell., 29, 261, 10.1109/TPAMI.2007.35
Grabner, 2006, vol. 1, 260
Babenko, 2011, Robust object tracking with online multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell., 33, 1619, 10.1109/TPAMI.2010.226
Hare, 2011, STRUCK: structured output tracking with kernels, 263
Yang, 2009, Tracking nonstationary visual appearances by data-driven adaptation, IEEE Trans. Image Process., 18, 1633, 10.1109/TIP.2009.2019807
Grabner, 2008, Semi-supervised online boosting for robust tracking
Tang, 2007, Co-tracking using semi-supervised support vector machines, 1
Kalal, 2009, Online learning of robust object detectors during unstable tracking
Yang, 2009, Detection driven adaptive multi-cue integration for multiple human tracking, 1554
Yu, 2008, Online tracking and reacquisition using co-trained generative and discriminative trackers, 678
Kalal, 2012, Tracking-learning-detection, IEEE Trans. PAMI, 34, 1409, 10.1109/TPAMI.2011.239
Sutton, 1998
Barto, 1995, Learning to act using real-time dynamic programming, AIJ, 72, 81
Shani, 2005, An MDP-based recommender system, J. Mach. Learn. Res., 6, 1265
Bhanu, 2000, Adaptive integrated image segmentation and object recognition, IEEE Trans. Syst. Man Cybern. C Appl. Rev., 30, 427, 10.1109/5326.897070
Ross, 2008, Online planning algorithms for POMDPs, J. Artif. Intell. Res., 32, 663, 10.1613/jair.2567
Paquet, 2006, Hybrid POMDP algorithms
Wang, 2012, A framework for moving target detection, recognition and tracking in UAV videos, 69
Watkins, 1989
Peng, 1998, Delayed reinforcement learning for adaptive image segmentation and feature extraction, IEEE Trans. Syst. Man Cybern. C Appl. Rev., 28, 482, 10.1109/5326.704593
Welch, 2006
Chen, 2010, Two-stage object tracking method based on kernel and active contour, IEEE Trans. Circ. Syst. Video Technol., 20, 605, 10.1109/TCSVT.2010.2041819
Czitrom, 1999, One-factor-at-a-time versus designed experiments, Am. Stat., 53, 2
Shen, 2013, Evolutionary adaptive eye tracking for low-cost human computer interaction applications, J. Electron. Imaging, 22, 10.1117/1.JEI.22.1.013031
Kaelbling, 1996, Reinforcement learning: a survey, J. Artif. Intell. Res., 4, 237, 10.1613/jair.301
Busoniu, 2008, A comprehensive survey of multi-agent reinforcement learning, IEEE Trans. Syst. Man Cybern. C. Appl. Rev., 38, 156, 10.1109/TSMCC.2007.913919
Stalder, 2009, Beyond semi-supervised tracking: tracking should be as simple as detection, but not simpler than recognition, 1409
Grabner, 2006, Real-time tracking via online boosting, 47
Adam, 2006, vol. 1, 798
Wu, 2013, Online object tracking: a benchmark, 2411
Zhang, 2012, Real-time compressive tracking
Henriques, 2012, Exploiting the circulant structure of tracking-by-detection with kernels
Carroll, 2002, vol. 10, 180