Adaptive traits of bark and ambrosia beetle-associated fungi
Tài liệu tham khảo
Andrews, 1986, R- and K-selection and microbial ecology, 99, 10.1007/978-1-4757-0611-6_3
Ayres, 2000, Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi, Ecology, 81, 2198, 10.1890/0012-9658(2000)081[2198:NBOPFB]2.0.CO;2
Bååth, 2001, Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol, Soil Biol. Biochem., 33, 2011, 10.1016/S0038-0717(01)00137-7
Baldrian, 2009, Microbial enzyme-catalyzed processes in soils and their analysis, Plant Soil Environ., 55, 370, 10.17221/134/2009-PSE
Batra, 1966, Ambrosia fungi: extent of specificity to ambrosia beetles, Science, 153, 193, 10.1126/science.153.3732.193
Bauer, 1966, Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol., 45, 493, 10.1093/ajcp/45.4_ts.493
Beaver, 1989, Insect-fungus relationships in the bark and ambrosia beetles, 121
Bentz, 2006, Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae), Ann. Entomol. Soc. Am., 99, 189, 10.1603/0013-8746(2006)099[0189:ECOFAW]2.0.CO;2
Blanchet, 2008, Forward selection of explanatory variables, Ecology, 89, 2623, 10.1890/07-0986.1
Bourbonnais, 1990, Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation, FEBS (Fed. Eur. Biochem. Soc.) Lett., 267, 99, 10.1016/0014-5793(90)80298-W
Buček, 2014, Δ12-fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids, PLoS One, 9, 10.1371/journal.pone.0093322
Chaturvedi, 2018
Clayton, 1964, The utilization of sterols by insects, J. Lipid Res., 5, 3, 10.1016/S0022-2275(20)40254-8
Cosgrove, 1997, Assembly and enlargement of the primary cell wall in plants, Annu. Rev. Cell Dev. Biol., 13, 171, 10.1146/annurev.cellbio.13.1.171
Davis, 2019, Evidence for multiple ecological roles of Leptographium abietinum, a symbiotic fungus associated with the North American spruce beetle, Funct. Ecol., 38, 62, 10.1016/j.funeco.2018.04.008
De Fine Licht, 2010, Evolutionary transitions in enzyme activity of ant fungus gardens, Evolution, 64, 2055
De Fine Licht, 2012, Patterns of functional enzyme activity in fungus farming ambrosia beetles, Front. Zool., 9, 13, 10.1186/1742-9994-9-13
Diniz-Filho, 2012, On the selection of phylogenetic eigenvectors for ecological analyses, Ecography, 35, 239, 10.1111/j.1600-0587.2011.06949.x
Dobranic, 1999, A microtiter plate procedure for evaluating fungal functional diversity, Mycologia, 91, 756, 10.1080/00275514.1999.12061081
Earle, 1967, Essential fatty acids in the diet of the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), J. Insect Physiol., 13, 187, 10.1016/0022-1910(67)90147-3
Garland, 1996, Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization, Soil Biol. Biochem., 28, 213, 10.1016/0038-0717(95)00112-3
Gazis, 2018, Mycobiota associated with insect galleries in walnut with thousand cankers disease reveals a potential natural enemy against Geosmithia morbida, Fungal Biol., 122, 241, 10.1016/j.funbio.2018.01.005
Gottlieb, 1968, Changes in fungi with age, Arch. Mikrobiol., 61, 394, 10.1007/BF00409675
Hammer, 2001, PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron., 4, 1
Harrington, 2005, Ecology and evolution of mycophagous bark beetles and their fungal partners, 257
Hofstetter, 2015
Huang, 2018, Multiple evolutionary origins lead to diversity in the metabolic profiles of ambrosia fungi, Fungal Ecol.
Hulcr, 2011, The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems, Proc. R. Soc. Lond. B Biol. Sci., 278, 2866
Jankowiak, 2014, Association of Geosmithia fungi (Ascomycota: Hypocreales) with pine- and spruce-infesting bark beetles in Poland, Fungal Ecol., 11, 71, 10.1016/j.funeco.2014.04.002
Jankowiak, 2010, Fungi associated with the fir bark beetle Cryphalus piceae in Poland, For. Pathol., 40, 133, 10.1111/j.1439-0329.2009.00620.x
Jost, 2006, Entropy and diversity, Oikos, 113, 363, 10.1111/j.2006.0030-1299.14714.x
Kasson, 2016, Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles, Fungal Ecol., 23, 86e96, 10.1016/j.funeco.2016.07.002
Katoh, 2008, Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework, BMC Bioinf., 9, 1, 10.1186/1471-2105-9-212
Kauserud, 2011, Mushroom's spore size and time of fruiting are strongly related: is moisture important?, Biol. Lett., 7, 273, 10.1098/rsbl.2010.0820
Kelley, 1998, Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae), Evolution, 52, 1731, 10.1111/j.1558-5646.1998.tb02253.x
Kim, 2011, 97
Kirisits, 2004, Fungal associates of european bark beetles with special emphasis on the Ophiostomatoid fungi, 181
Kok, 1979, Lipids of ambrosia fungi and the life of mutualistic beetles
Kolařík, 2011, Geosmithia morbida sp nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA, Mycologia, 103, 325, 10.3852/10-124
Kolařík, 2015, New species of Geosmithia and Graphium associated with ambrosia beetles in Costa Rica, Czech Mycol., 67, 10.33585/cmy.67103
Kolařík, 2017, Geosmithia associated with bark beetles in the western USA: taxonomic diversity and vector specificity, Mycologia, 109, 185, 10.1080/00275514.2017.1303861
Kolařík, 2013, Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe, Microb. Ecol., 66, 682, 10.1007/s00248-013-0228-x
Kolařík, 2010, Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales), Fungal Biol., 114, 676, 10.1016/j.funbio.2010.06.005
Kolařík, 2007, Host range and diversity of the genus Geosmithia (Ascomycota : Hypocreales) living in association with bark beetles in the Mediterranean area, Mycol. Res., 111, 1298, 10.1016/j.mycres.2007.06.010
Kolařík, 2008, Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe, Microb. Ecol., 56, 198, 10.1007/s00248-008-9371-1
Kolařík, 2004, Morphological and molecular characterisation of Geosmithia putterillii, G-pallida comb. nov and G-flava sp nov., associated with subcorticolous insects, Mycol. Res., 108, 1053, 10.1017/S0953756204000796
Kubicek, 2003, Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates, Fungal Genet. Biol., 38, 310, 10.1016/S1087-1845(02)00583-2
McCune, 2002
Meerts, 2002, Mineral nutrient concentrations in sapwood and heartwood: a literature review, Ann. For. Sci., 59, 713, 10.1051/forest:2002059
Ngo, 1980, A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions, Anal. Biochem., 105, 389, 10.1016/0003-2697(80)90475-3
Nijholt, 1980, Pine oil and oleic acid delay and reduce attacks on logs by ambrosia beetles (Coleoptera: scolytidae), Can. Entomol., 112, 199, 10.4039/Ent112199-2
Oksanen, 2013
Paradis, 2004, APE: analyses of phylogenetics and evolution in R language, Bioinformatics, 20, 289, 10.1093/bioinformatics/btg412
Pepori, 2015, Morphological and molecular characterisation of Geosmithia species on European elms, Fungal Biol., 119, 1063, 10.1016/j.funbio.2015.08.003
Peres-Neto, 2006, Variation partitioning of species data matrices: estimation and comparison of fractions, Ecology, 87, 2614, 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
Ploetz, 2013, Destructive tree diseases Associated with ambrosia and bark beetles: black swan events in tree pathology?, Plant Dis., 97, 856, 10.1094/PDIS-01-13-0056-FE
R Developement Core Team, 2010
Ronquist, 2003, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 19, 1572, 10.1093/bioinformatics/btg180
Santiago, 2013, Impact of cell wall composition on maize resistance to pests and diseases, Int. J. Mol. Sci., 14, 6960, 10.3390/ijms14046960
Shimp, 1977, Lipids of Penicillium roqueforti. Influence of culture temperature and age on unsaturated fatty acids, J. Agric. Food Chem., 25, 793, 10.1021/jf60212a031
Schuelke, 2017, Comparative genomics of pathogenic and nonpathogenic beetle-vectored fungi in the genus Geosmithia, Genome Biol. Evol., 9, 3312, 10.1093/gbe/evx242
Six, 2013, The bark beetle holobiont: why microbes matter, J. Chem. Ecol., 39, 989, 10.1007/s10886-013-0318-8
Stahl, 1996, Characterization and differentiation of filamentous fungi based on fatty acid composition, Appl. Environ. Microbiol., 62, 4136, 10.1128/AEM.62.11.4136-4146.1996
Stodůlková, 2009, Hydroxylated anthraquinones produced by Geosmithia species, Folia Microbiol., 54, 179, 10.1007/s12223-009-0028-3
Stodůlková, 2010, High-performance liquid chromatography–off line mass spectrometry analysis of anthraquinones produced by Geosmithia lavendula, J. Chromatogr. A, 1217, 6296, 10.1016/j.chroma.2010.08.009
Sun, 2013, Corpse management in social insects, Int. J. Biol. Sci., 9, 313, 10.7150/ijbs.5781
Šnajdr, 2008, Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes, Enzym. Microb. Technol., 43, 186, 10.1016/j.enzmictec.2007.11.008
Tamura, 2011, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731, 10.1093/molbev/msr121
Tedersoo, 2013, Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis, New Phytol., 199, 822, 10.1111/nph.12328
Tisserat, 2009, Black walnut mortality in Colorado caused by the walnut twig beetle and Thousand Cankers Disease, Plant Health Prog., 10.1094/PHP-2009-0811-01-RS
Tuomisto, 2012, Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results, Ecography, 35, 961, 10.1111/j.1600-0587.2012.07339.x
Tylova, 2011, The UHPLC-DAD fingerprinting method for analysis of extracellular metabolites of fungi of the genus Geosmithia (Acomycota: Hypocreales), Anal. Bioanal. Chem., 400, 2943, 10.1007/s00216-011-4982-7
Vepsäläinen, 2001, Application of soil enzyme activity test kit in a field experiment, Soil Biol. Biochem., 33, 1665, 10.1016/S0038-0717(01)00087-6
Veselská, 2015, Application of flow cytometry for exploring the evolution of Geosmithia fungi living in association with bark beetles: the role of conidial DNA content, Fungal Ecol., 13, 83, 10.1016/j.funeco.2014.08.007
Veselská, T. and Kolařík, M. Influence of Long-Term in Vitro Preservation of Fungal Strain on Their Metabolic Profile. (Data in Brief submitted).
Yao, 2009, The ancient chemistry of avoiding risks of predation and disease, Evol. Biol., 36, 267, 10.1007/s11692-009-9069-4
