Adaptive traits of bark and ambrosia beetle-associated fungi

Fungal Ecology - Tập 41 - Trang 165-176 - 2019
Tereza Veselská1,2, James Skelton3, Martin Kostovčík1, Jiří Hulcr3, Petr Baldrian1, Milada Chudíčková1, Tomáš Cajthaml1,4, Tereza Vojtová1, Paula Garcia-Fraile1, Miroslav Kolařík1
1Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
2Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Praha 2, Czech Republic
3School of Forest Resources and Conservation and Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32611, USA
4Institute for Environmental Studies, Faculty of Science, Charles University, Albertov 6, Prague, 128 43, Czech Republic

Tài liệu tham khảo

Andrews, 1986, R- and K-selection and microbial ecology, 99, 10.1007/978-1-4757-0611-6_3 Ayres, 2000, Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi, Ecology, 81, 2198, 10.1890/0012-9658(2000)081[2198:NBOPFB]2.0.CO;2 Bååth, 2001, Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol, Soil Biol. Biochem., 33, 2011, 10.1016/S0038-0717(01)00137-7 Baldrian, 2009, Microbial enzyme-catalyzed processes in soils and their analysis, Plant Soil Environ., 55, 370, 10.17221/134/2009-PSE Batra, 1966, Ambrosia fungi: extent of specificity to ambrosia beetles, Science, 153, 193, 10.1126/science.153.3732.193 Bauer, 1966, Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol., 45, 493, 10.1093/ajcp/45.4_ts.493 Beaver, 1989, Insect-fungus relationships in the bark and ambrosia beetles, 121 Bentz, 2006, Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae), Ann. Entomol. Soc. Am., 99, 189, 10.1603/0013-8746(2006)099[0189:ECOFAW]2.0.CO;2 Blanchet, 2008, Forward selection of explanatory variables, Ecology, 89, 2623, 10.1890/07-0986.1 Bourbonnais, 1990, Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation, FEBS (Fed. Eur. Biochem. Soc.) Lett., 267, 99, 10.1016/0014-5793(90)80298-W Buček, 2014, Δ12-fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids, PLoS One, 9, 10.1371/journal.pone.0093322 Chaturvedi, 2018 Clayton, 1964, The utilization of sterols by insects, J. Lipid Res., 5, 3, 10.1016/S0022-2275(20)40254-8 Cosgrove, 1997, Assembly and enlargement of the primary cell wall in plants, Annu. Rev. Cell Dev. Biol., 13, 171, 10.1146/annurev.cellbio.13.1.171 Davis, 2019, Evidence for multiple ecological roles of Leptographium abietinum, a symbiotic fungus associated with the North American spruce beetle, Funct. Ecol., 38, 62, 10.1016/j.funeco.2018.04.008 De Fine Licht, 2010, Evolutionary transitions in enzyme activity of ant fungus gardens, Evolution, 64, 2055 De Fine Licht, 2012, Patterns of functional enzyme activity in fungus farming ambrosia beetles, Front. Zool., 9, 13, 10.1186/1742-9994-9-13 Diniz-Filho, 2012, On the selection of phylogenetic eigenvectors for ecological analyses, Ecography, 35, 239, 10.1111/j.1600-0587.2011.06949.x Dobranic, 1999, A microtiter plate procedure for evaluating fungal functional diversity, Mycologia, 91, 756, 10.1080/00275514.1999.12061081 Earle, 1967, Essential fatty acids in the diet of the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), J. Insect Physiol., 13, 187, 10.1016/0022-1910(67)90147-3 Garland, 1996, Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization, Soil Biol. Biochem., 28, 213, 10.1016/0038-0717(95)00112-3 Gazis, 2018, Mycobiota associated with insect galleries in walnut with thousand cankers disease reveals a potential natural enemy against Geosmithia morbida, Fungal Biol., 122, 241, 10.1016/j.funbio.2018.01.005 Gottlieb, 1968, Changes in fungi with age, Arch. Mikrobiol., 61, 394, 10.1007/BF00409675 Hammer, 2001, PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron., 4, 1 Harrington, 2005, Ecology and evolution of mycophagous bark beetles and their fungal partners, 257 Hofstetter, 2015 Huang, 2018, Multiple evolutionary origins lead to diversity in the metabolic profiles of ambrosia fungi, Fungal Ecol. Hulcr, 2011, The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems, Proc. R. Soc. Lond. B Biol. Sci., 278, 2866 Jankowiak, 2014, Association of Geosmithia fungi (Ascomycota: Hypocreales) with pine- and spruce-infesting bark beetles in Poland, Fungal Ecol., 11, 71, 10.1016/j.funeco.2014.04.002 Jankowiak, 2010, Fungi associated with the fir bark beetle Cryphalus piceae in Poland, For. Pathol., 40, 133, 10.1111/j.1439-0329.2009.00620.x Jost, 2006, Entropy and diversity, Oikos, 113, 363, 10.1111/j.2006.0030-1299.14714.x Kasson, 2016, Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles, Fungal Ecol., 23, 86e96, 10.1016/j.funeco.2016.07.002 Katoh, 2008, Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework, BMC Bioinf., 9, 1, 10.1186/1471-2105-9-212 Kauserud, 2011, Mushroom's spore size and time of fruiting are strongly related: is moisture important?, Biol. Lett., 7, 273, 10.1098/rsbl.2010.0820 Kelley, 1998, Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae), Evolution, 52, 1731, 10.1111/j.1558-5646.1998.tb02253.x Kim, 2011, 97 Kirisits, 2004, Fungal associates of european bark beetles with special emphasis on the Ophiostomatoid fungi, 181 Kok, 1979, Lipids of ambrosia fungi and the life of mutualistic beetles Kolařík, 2011, Geosmithia morbida sp nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA, Mycologia, 103, 325, 10.3852/10-124 Kolařík, 2015, New species of Geosmithia and Graphium associated with ambrosia beetles in Costa Rica, Czech Mycol., 67, 10.33585/cmy.67103 Kolařík, 2017, Geosmithia associated with bark beetles in the western USA: taxonomic diversity and vector specificity, Mycologia, 109, 185, 10.1080/00275514.2017.1303861 Kolařík, 2013, Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe, Microb. Ecol., 66, 682, 10.1007/s00248-013-0228-x Kolařík, 2010, Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales), Fungal Biol., 114, 676, 10.1016/j.funbio.2010.06.005 Kolařík, 2007, Host range and diversity of the genus Geosmithia (Ascomycota : Hypocreales) living in association with bark beetles in the Mediterranean area, Mycol. Res., 111, 1298, 10.1016/j.mycres.2007.06.010 Kolařík, 2008, Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe, Microb. Ecol., 56, 198, 10.1007/s00248-008-9371-1 Kolařík, 2004, Morphological and molecular characterisation of Geosmithia putterillii, G-pallida comb. nov and G-flava sp nov., associated with subcorticolous insects, Mycol. Res., 108, 1053, 10.1017/S0953756204000796 Kubicek, 2003, Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates, Fungal Genet. Biol., 38, 310, 10.1016/S1087-1845(02)00583-2 McCune, 2002 Meerts, 2002, Mineral nutrient concentrations in sapwood and heartwood: a literature review, Ann. For. Sci., 59, 713, 10.1051/forest:2002059 Ngo, 1980, A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions, Anal. Biochem., 105, 389, 10.1016/0003-2697(80)90475-3 Nijholt, 1980, Pine oil and oleic acid delay and reduce attacks on logs by ambrosia beetles (Coleoptera: scolytidae), Can. Entomol., 112, 199, 10.4039/Ent112199-2 Oksanen, 2013 Paradis, 2004, APE: analyses of phylogenetics and evolution in R language, Bioinformatics, 20, 289, 10.1093/bioinformatics/btg412 Pepori, 2015, Morphological and molecular characterisation of Geosmithia species on European elms, Fungal Biol., 119, 1063, 10.1016/j.funbio.2015.08.003 Peres-Neto, 2006, Variation partitioning of species data matrices: estimation and comparison of fractions, Ecology, 87, 2614, 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 Ploetz, 2013, Destructive tree diseases Associated with ambrosia and bark beetles: black swan events in tree pathology?, Plant Dis., 97, 856, 10.1094/PDIS-01-13-0056-FE R Developement Core Team, 2010 Ronquist, 2003, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 19, 1572, 10.1093/bioinformatics/btg180 Santiago, 2013, Impact of cell wall composition on maize resistance to pests and diseases, Int. J. Mol. Sci., 14, 6960, 10.3390/ijms14046960 Shimp, 1977, Lipids of Penicillium roqueforti. Influence of culture temperature and age on unsaturated fatty acids, J. Agric. Food Chem., 25, 793, 10.1021/jf60212a031 Schuelke, 2017, Comparative genomics of pathogenic and nonpathogenic beetle-vectored fungi in the genus Geosmithia, Genome Biol. Evol., 9, 3312, 10.1093/gbe/evx242 Six, 2013, The bark beetle holobiont: why microbes matter, J. Chem. Ecol., 39, 989, 10.1007/s10886-013-0318-8 Stahl, 1996, Characterization and differentiation of filamentous fungi based on fatty acid composition, Appl. Environ. Microbiol., 62, 4136, 10.1128/AEM.62.11.4136-4146.1996 Stodůlková, 2009, Hydroxylated anthraquinones produced by Geosmithia species, Folia Microbiol., 54, 179, 10.1007/s12223-009-0028-3 Stodůlková, 2010, High-performance liquid chromatography–off line mass spectrometry analysis of anthraquinones produced by Geosmithia lavendula, J. Chromatogr. A, 1217, 6296, 10.1016/j.chroma.2010.08.009 Sun, 2013, Corpse management in social insects, Int. J. Biol. Sci., 9, 313, 10.7150/ijbs.5781 Šnajdr, 2008, Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes, Enzym. Microb. Technol., 43, 186, 10.1016/j.enzmictec.2007.11.008 Tamura, 2011, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731, 10.1093/molbev/msr121 Tedersoo, 2013, Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis, New Phytol., 199, 822, 10.1111/nph.12328 Tisserat, 2009, Black walnut mortality in Colorado caused by the walnut twig beetle and Thousand Cankers Disease, Plant Health Prog., 10.1094/PHP-2009-0811-01-RS Tuomisto, 2012, Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results, Ecography, 35, 961, 10.1111/j.1600-0587.2012.07339.x Tylova, 2011, The UHPLC-DAD fingerprinting method for analysis of extracellular metabolites of fungi of the genus Geosmithia (Acomycota: Hypocreales), Anal. Bioanal. Chem., 400, 2943, 10.1007/s00216-011-4982-7 Vepsäläinen, 2001, Application of soil enzyme activity test kit in a field experiment, Soil Biol. Biochem., 33, 1665, 10.1016/S0038-0717(01)00087-6 Veselská, 2015, Application of flow cytometry for exploring the evolution of Geosmithia fungi living in association with bark beetles: the role of conidial DNA content, Fungal Ecol., 13, 83, 10.1016/j.funeco.2014.08.007 Veselská, T. and Kolařík, M. Influence of Long-Term in Vitro Preservation of Fungal Strain on Their Metabolic Profile. (Data in Brief submitted). Yao, 2009, The ancient chemistry of avoiding risks of predation and disease, Evol. Biol., 36, 267, 10.1007/s11692-009-9069-4