Adaptive strategies of uropathogenic Escherichia coli CFT073: from growth in lab media to virulence during host cell adhesion

Meysam Sarshar1, Daniela Scribano2,3, Dolores Limongi4, Carlo Zagaglia3, Anna Teresa Palamara5,6, Cecilia Ambrosi4
1Research Laboratories, Bambino Gesù Children’s Hospital – IRCCS, Rome, Italy
2Dani Di Giò Foundation-Onlus, Rome, Italy
3Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
4Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS San Raffaele Rome, Rome, Italy
5Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
6Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, Rome, Italy

Tóm tắt

Urinary tract infections (UTIs) are a major concern in public health. The prevalent uropathogenic bacterium in healthcare settings is Escherichia coli. The increasing rate of antibiotic-resistant strains demands studies to understand E. coli pathogenesis to drive the development of new therapeutic approaches. This study compared the gene expression profile of selected target genes in the prototype uropathogenic E. coli (UPEC) strain CFT073 grown in Luria Bertani (LB), artificial urine (AU), and during adhesion to host bladder cells by semi-quantitative real-time PCR (RT-PCR) assays. AU effectively supported the growth of strain CFT073 as well as other E. coli strains with different lifestyles, thereby confirming the appropriateness of this medium for in vitro models. Unexpectedly, gene expression of strain CFT073 in LB and AU was quite similar; conversely, during the adhesion assay, adhesins and porins were upregulated, while key global regulators were downregulated with respect to lab media. Interestingly, fimH and papGII genes were significantly expressed in all tested conditions. Taken together, these results provide for the first time insights of the metabolic and pathogenic profile of strain CFT073 during the essential phase of host cell adhesion.

Từ khóa


Tài liệu tham khảo

Aidelberg G, Towbin BD, Rothschild D, Dekel E, Bren A, Alon U (2014) Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst Biol 8:133. https://doi.org/10.1186/s12918-014-0133-z

Alteri CJ, Mobley HL (2007) Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect Immun 75(6):2679–2688

Ambrosi C, Pompili M, Scribano D, Zagaglia C, Ripa S, Nicoletti M (2012) Outer membrane protein A (OmpA): a new player in shigella flexneri protrusion formation and inter-cellular spreading. PLoS ONE 7(11):e49625. https://doi.org/10.1371/journal.pone.0049625

Ambrosi C, Pompili M, Scribano D et al (2015) The Shigella flexneri OspB effector: an early immunomodulator. International Journal of Medical Microbiology : IJMM 305(1):75–84. https://doi.org/10.1016/j.ijmm.2014.11.004

Ambrosi C, Sarshar M, Aprea MR et al (2019) Colonic adenoma-associated Escherichia coli express specific phenotypes. Microbes Infect 21(7):305–312. https://doi.org/10.1016/j.micinf.2019.02.001

Azam MS, Vanderpool CK (2018) Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism. Nucleic Acids Res 46(5):2585–2599. https://doi.org/10.1093/nar/gkx1286

Banerjee R, Weisenhorn E, Schwartz KJ, et al. (2020) Tailoring a global iron regulon to a uropathogen. mBio 11(2) https://doi.org/10.1128/mBio.00351-20

Barbieri NL, Nicholson B, Hussein A et al (2014) FNR regulates expression of important virulence factors contributing to pathogenicity of uropathogenic Escherichia coli. Infect Immun 82(12):5086–5098. https://doi.org/10.1128/iai.02315-14

Barnard A, Wolfe A, Busby S (2004) Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr Opin Microbiol 7(2):102–108. https://doi.org/10.1016/j.mib.2004.02.011

Baum M, Watad M, Smith SN et al (2014) PafR, a novel transcription regulator, is important for pathogenesis in uropathogenic Escherichia coli. Infect Immun 82(10):4241–4252. https://doi.org/10.1128/iai.00086-14

Beatson SA, Ben Zakour NL, Totsika M et al (2015) Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition. Infect Immun 83(5):1749–1764. https://doi.org/10.1128/iai.02810-14

Behzadi P (2020) Classical chaperone-usher (CU) adhesive fimbriome: uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Folia Microbiol 65(1):45–65. https://doi.org/10.1007/s12223-019-00719-x

Behzadi P, Urbán E, Matuz M, Benkő R, Gajdács M (2021) The role of gram-negative bacteria in urinary tract infections: current concepts and therapeutic options. Adv Exp Med Biol 1323:35–69. https://doi.org/10.1007/5584_2020_566

Bianchi DM, Brier TA, Poddar A et al (2020) Stochastic analysis demonstrates the dual role of Hfq in chaperoning E coli sugar shock response. Frontiers in molecular biosciences 7:593826. https://doi.org/10.3389/fmolb.2020.593826

Blomfield IC (2001) The regulation of pap and type 1 fimbriation in Escherichia coli. Adv Microb Physiol 45:1–49. https://doi.org/10.1016/s0065-2911(01)45001-6

Bruxvoort KJ, Bider-Canfield Z, Casey JA et al (2020) Outpatient urinary tract infections in an era of virtual healthcare: trends from 2008 to 2017. Clinical Infectious Diseases : an Official Publication of the Infectious Diseases Society of America 71(1):100–108. https://doi.org/10.1093/cid/ciz764

Campilongo R, DiMartino ML, Marcocci L et al (2014) Molecular and functional profiling of the polyamine content in enteroinvasive E coli : looking into the gap between commensal E coli and harmful Shigella. PloS one 9(9):e106589. https://doi.org/10.1371/journal.pone.0106589

Camprubí-Font C, Ruiz Del Castillo B, Barrabés S, Martínez-Martínez L, Martinez-Medina M (2019) Amino acid substitutions and differential gene expression of outer membrane proteins in adherent-invasive Escherichia coli. Front Microbiol 10:1707. https://doi.org/10.3389/fmicb.2019.01707

Cech GM, Szalewska-Pałasz A, Kubiak K et al (2016) The Escherichia coli Hfq protein: an unattended DNA-transactions regulator. Front Mol Biosci 3:36. https://doi.org/10.3389/fmolb.2016.00036

Chattopadhyay MK, Keembiyehetty CN, Chen W, Tabor H (2015) Polyamines stimulate the level of the σ38 subunit (RpoS) of Escherichia coli RNA polymerase, resulting in the induction of the glutamate decarboxylase-dependent acid response system via the gadE regulon. J Biol Chem 290(29):17809–17821. https://doi.org/10.1074/jbc.M115.655688

Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70(4):939–1031. https://doi.org/10.1128/mmbr.00024-06

Ellermann M, Arthur JC (2017) Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radical Biol Med 105:68–78. https://doi.org/10.1016/j.freeradbiomed.2016.10.489

Engelsöy U, Rangel I, Demirel I (2019) Impact of proinflammatory cytokines on the virulence of uropathogenic Escherichia coli. Front Microbiol 10:1051. https://doi.org/10.3389/fmicb.2019.01051

Erni B, Zanolari B, Kocher HP (1987) The mannose permease of Escherichia coli consists of three different proteins Amino acid sequence and function in sugar transport, sugar phosphorylation and penetration of phage lambda DNA. The Journal of biological chemistry 26211:523847

Finney LA, O’Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science (new York, NY) 300(5621):931–936. https://doi.org/10.1126/science.1085049

Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13(5):269–284. https://doi.org/10.1038/nrmicro3432

Foxman B (2014) Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 28(1):1–13. https://doi.org/10.1016/j.idc.2013.09.003

Gond DP, Singh S, Agrawal NK (2018) Norepinephrine augmented in vitro growth of uropathogenic E coli in type 2 diabetes mellitus and its suppression by silodosin (alpha blocker). Diagn microbiol and infect dis 92(2):85–89. https://doi.org/10.1016/j.diagmicrobio.2018.05.005

Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr (2004) Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol 186(11):3516–3524. https://doi.org/10.1128/jb.186.11.3516-3524.2004

Greene SE, Hibbing ME, Janetka J, Chen SL, Hultgren SJ (2015) Human urine decreases function and expression of type 1 pili in uropathogenic Escherichia coli. M Bio 6(4):e00820-15

Guyer DM, Kao JS, Mobley HL (1998) Genomic analysis of a pathogenicity island in uropathogenic Escherichia coli CFT073: distribution of homologous sequences among isolates from patients with pyelonephritis, cystitis, and catheter-associated bacteriuria and from fecal samples. Infect Immun 66(9):4411–4417. https://doi.org/10.1128/iai.66.9.4411-4417.1998

Hagan EC, Mobley HL (2007) Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect Immun 75(8):3941–3949. https://doi.org/10.1128/iai.00337-07

Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HL (2010) Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS pathogens 6(11):e1001187

Haiko J, Westerlund-Wikström B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology 2(4):1242–1267. https://doi.org/10.3390/biology2041242

Hanamura A, Aiba H (1991) Molecular mechanism of negative autoregulation of Escherichia coli crp gene. Nucleic Acids Res 19(16):4413–4419. https://doi.org/10.1093/nar/19.16.4413

Hasan T, Choi CH, Oh MH (2015) Genes involved in the biosynthesis and transport of acinetobactin in Acinetobacter baumannii. Genomics & Informatics 13(1):2

Holden N, Totsika M, Dixon L, Catherwood K, Gally DL (2007) Regulation of P-fimbrial phase variation frequencies in Escherichia coli CFT073. Infect Immun 75(7):3325–3334. https://doi.org/10.1128/iai.01989-06

Klemm P, Hancock V, Schembri MA (2010) Fimbrial adhesins from extraintestinal Escherichia coli. Environ Microbiol Reports 2(5):628–640

Kukkonen M, Korhonen TK (2004) The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of Yersinia pestis. Int J of Med Microbiol IJMM 294(1):7–14. https://doi.org/10.1016/j.ijmm.2004.01.003

Kurabayashi K, Agata T, Asano H, Tomita H, Hirakawa H (2016) Fur represses adhesion to, invasion of, and intracellular bacterial community formation within bladder epithelial cells and motility in uropathogenic Escherichia coli. Infect Immun 84(11):3220–3231. https://doi.org/10.1128/iai.00369-16

Lane MC, Lockatell V, Monterosso G et al (2005) Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73(11):7644–7656. https://doi.org/10.1128/iai.73.11.7644-7656.2005

Li Y, Dai J, Zhuge X et al (2016) Iron-regulated gene ireA in avian pathogenic Escherichia coli participates in adhesion and stress-resistance. BMC Vet Res 12(1):167. https://doi.org/10.1186/s12917-016-0800-y

Lin HH, Hsu CC, Yang CD, Ju YW, Chen YP, Tseng CP (2011) Negative effect of glucose on ompA mRNA stability: a potential role of cyclic AMP in the repression of hfq in Escherichia coli. J Bacteriol 193(20):5833–5840. https://doi.org/10.1128/jb.05359-11

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (san Diego, Calif) 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

Lloyd AL, Henderson TA, Vigil PD, Mobley HL (2009) Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 191(11):3469–3481. https://doi.org/10.1128/jb.01717-08

Ma J, Cai X, Bao Y, Yao H, Li G (2018) Uropathogenic Escherichia coli preferentially utilize metabolites in urine for nucleotide biosynthesis through salvage pathways. International Journal of Medical Microbiology IJMM 308(8):990–999. https://doi.org/10.1016/j.ijmm.2018.08.006

Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science (new York, NY) 259(5095):686–688. https://doi.org/10.1126/science.8430319

Marteyn B, West NP, Browning DF et al (2010) Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465(7296):355–358. https://doi.org/10.1038/nature08970

Martínez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6(5):482–489. https://doi.org/10.1016/j.mib.2003.09.002

Middendorf B, Blum-Oehler G, Dobrindt U, Mühldorfer I, Salge S, Hacker J (2001) The pathogenicity islands (PAIs) of the uropathogenic Escherichia coli strain 536: island probing of PAI II536. J Infect Dis 183(Suppl 1):S17-20. https://doi.org/10.1086/318843

Mobley HL (2016) Measuring Escherichia coli gene expression during human urinary tract infections. Pathogens (Basel, Switzerland) 5(1) https://doi.org/10.3390/pathogens5010007

Müller CM, Aberg A, Straseviçiene J, Emody L, Uhlin BE, Balsalobre C (2009) Type 1 fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMP. PLoS Pathog 5(2):e1000303. https://doi.org/10.1371/journal.ppat.1000303

Nichols KB, Totsika M, Moriel DG et al (2016) Molecular characterization of the vacuolating autotransporter toxin in uropathogenic Escherichia coli. J Bacteriol 198(10):1487–1498. https://doi.org/10.1128/jb.00791-15

Nieto JM, Carmona M, Bolland S, Jubete Y, de la Cruz F, Juárez A (1991) The hha gene modulates haemolysin expression in Escherichia coli. Mol Microbiol 5(5):1285–1293. https://doi.org/10.1111/j.1365-2958.1991.tb01902.x

Nieto JM, Madrid C, Prenafeta A et al (2000) Expression of the hemolysin operon in Escherichia coli is modulated by a nucleoid-protein complex that includes the proteins Hha and H-NS. Mol Gen Genet MGG 263(2):349–358. https://doi.org/10.1007/s004380051178

Paniagua-Contreras GL, Hernández-Jaimes T, Monroy-Pérez E et al (2017) Comprehensive expression analysis of pathogenicity genes in uropathogenic Escherichia coli strains. Microb Pathog 103:1–7. https://doi.org/10.1016/j.micpath.2016.12.008

Patzer SI, Hantke K (2000) The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275(32):24321–24332. https://doi.org/10.1074/jbc.M001775200

Pokharel P, Díaz JM, Bessaiah H, Houle S, Guerrero-Barrera AL, Dozois CM (2020) The serine protease autotransporters tagb, tagc, and sha from extraintestinal pathogenic Escherichia coli are internalized by human bladder epithelial cells and cause actin cytoskeletal disruption. Int J Mol Sci 21(9):3047

Reitzer L, Zimmern P (2019) Rapid growth and metabolism of uropathogenic Escherichia coli in relation to urine composition. Clinical microbiology reviews 33(1) https://doi.org/10.1128/cmr.00101-19

Ribić R, Meštrović T, Neuberg M, Kozina G (2018) Effective anti-adhesives of uropathogenic Escherichia coli. Acta Pharm (zagreb, Croatia) 68(1):1–18. https://doi.org/10.2478/acph-2018-0004

Robinson AE, Heffernan JR, Henderson JP (2018) The iron hand of uropathogenic Escherichia coli: the role of transition metal control in virulence. Future Microbiol 13(7):745–756. https://doi.org/10.2217/fmb-2017-0295

Roos V, Ulett GC, Schembri MA, Klemm P (2006) The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E coli strains in human urine. Infect and immun 74(1):615–624

Sachs G, Kraut JA, Wen Y, Feng J, Scott DR (2006) Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J Membr Biol 212(2):71–82. https://doi.org/10.1007/s00232-006-0867-7

Sarshar M, Scribano D, Marazzato M et al (2017) Genetic diversity, phylogroup distribution and virulence gene profile of pks positive Escherichia coli colonizing human intestinal polyps. Microb Pathog 112:274–278. https://doi.org/10.1016/j.micpath.2017.10.009

Sarshar M, Behzadi P, Ambrosi C, Zagaglia C, Palamara AT, Scribano D (2020) FimH and anti-adhesive therapeutics: a disarming strategy against uropathogens. Antibiotics (Basel, Switzerland) 9(7) https://doi.org/10.3390/antibiotics9070397

Schembri M, Ussery D, Workman C, Hasman H, Klemm P (2002) DNA microarray analysis of fim mutations in Escherichia coli. Mol Genet Genomics 267(6):721–729

Scribano D, Damico R, Ambrosi C et al (2016) The Shigella flexneri OmpA amino acid residues (188)EVQ(190) are essential for the interaction with the virulence factor PhoN2. Biochem and Biophys Reports 8:168–173. https://doi.org/10.1016/j.bbrep.2016.08.010

Scribano D, Sarshar M, Prezioso C, et al. (2020) d-Mannose treatment neither affects uropathogenic Escherichia coli properties nor induces stable FimH modifications. Molecules (Basel, Switzerland) 25(2) https://doi.org/10.3390/molecules25020316

Sebbane F, Bury-Moné S, Cailliau K, Browaeys-Poly E, De Reuse H, Simonet M (2002) The Yersinia pseudotuberculosis Yut protein, a new type of urea transporter homologous to eukaryotic channels and functionally interchangeable in vitro with the Helicobacter pylori UreI protein. Mol Microbiol 45(4):1165–1174. https://doi.org/10.1046/j.1365-2958.2002.03096.x

Semsey S, Andersson AM, Krishna S, Jensen MH, Massé E, Sneppen K (2006) Genetic regulation of fluxes: iron homeostasis of Escherichia coli. Nucleic Acids Res 34(17):4960–4967. https://doi.org/10.1093/nar/gkl627

Shimada T, Fujita N, Yamamoto K, Ishihama A (2011) Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE 6(6):e20081. https://doi.org/10.1371/journal.pone.0020081

Sintsova A, Frick-Cheng AE, Smith S, et al. (2019) Genetically diverse uropathogenic Escherichia coli adopt a common transcriptional program in patients with UTIs. eLife 8 https://doi.org/10.7554/eLife.49748

Snyder JA, Haugen BJ, Buckles EL et al (2004) Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72(11):6373–6381

Snyder JA, Haugen BJ, Lockatell CV et al (2005) Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73(11):7588–7596. https://doi.org/10.1128/iai.73.11.7588-7596.2005

Spaulding CN, Hultgren SJ (2016) Adhesive pili in UTI pathogenesis and drug development. Pathogens (Basel, Switzerland) 5(1) https://doi.org/10.3390/pathogens5010030

Subashchandrabose S, Smith SN, Spurbeck RR, Kole MM, Mobley HL (2013) Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLoS Pathog 9(12):e1003788. https://doi.org/10.1371/journal.ppat.1003788

Subashchandrabose S, Hazen TH, Brumbaugh AR et al (2014) Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci 111(51):18327–18332

Taabodi M, May EB, Bryant RB et al (2020) Aeromonas hydrophila, Bacillus thuringiensis, Escherichia coli and Pseudomonas aeruginosa utilization of Ammonium-N. Nitrate-N and Urea-N in Culture Heliyon 6(4):e03711. https://doi.org/10.1016/j.heliyon.2020.e03711

Torres AN, Chamorro-Veloso N, Costa P, et al. (2020) Deciphering additional roles for the EF-Tu, l-asparaginase II and OmpT proteins of Shiga toxin-producing Escherichia coli. Microorganisms 8(8) https://doi.org/10.3390/microorganisms8081184

Varadarajan N, Rodriguez S, Hwang BY, Georgiou G, Iverson BL (2008) Highly active and selective endopeptidases with programmed substrate specificities. Nat Chem Biol 4(5):290–294. https://doi.org/10.1038/nchembio.80

Vejborg RM, de Evgrafov MR, Phan MD, Totsika M, Schembri MA, Hancock V (2012) Identification of genes important for growth of asymptomatic bacteriuria Escherichia coli in urine. Infect Immun 80(9):3179–3188. https://doi.org/10.1128/iai.00473-12

Velasco E, Wang S, Sanet M et al (2018) A new role for Zinc limitation in bacterial pathogenicity: modulation of α-hemolysin from uropathogenic Escherichia coli. Sci Rep 8(1):6535. https://doi.org/10.1038/s41598-018-24964-1

Vimr E, Steenbergen S, Cieslewicz M (1995) Biosynthesis of the polysialic acid capsule in Escherichia coli K1. J Ind Microbiol 15(4):352–360. https://doi.org/10.1007/bf01569991

Wang Y (2002) The function of OmpA in Escherichia coli. Biochem Biophys Res Commun 292(2):396–401. https://doi.org/10.1006/bbrc.2002.6657

Werneburg GT Thanassi DG (2018) Pili assembled by the chaperone/usher pathway in Escherichia coli and Salmonella. EcoSal Plus 8(1) https://doi.org/10.1128/ecosalplus.ESP-0007-2017

Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31(5):1307–1319. https://doi.org/10.1046/j.1365-2958.1999.01276.x

Zhao L, Gao S, Huan H et al (2009) Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E coli in a murine urinary tract infection model and a chicken challenge model. Microbiology (Reading, England) 155(Pt 5):1634–1644. https://doi.org/10.1099/mic.0.024869-0