Adaptive sliding mode control for instability compensation in DC microgrids due to EV charging infrastructure
Tài liệu tham khảo
Rezkallah, 2019, Microgrid: Configurations, control and applications, IEEE Trans. Smart Grid, 10, 1290, 10.1109/TSG.2017.2762349
Shrivastava, 2023, Review on technological advancement of lithium-ion battery states estimation methods for electric vehicle applications, J. Energy Storage, 64, 10.1016/j.est.2023.107159
Ehsani, 2021, State of the art and trends in electric and hybrid electric vehicles, Proc. IEEE, 109, 967, 10.1109/JPROC.2021.3072788
Khan, 2022, A comparative study on different online state of charge estimation algorithms for lithium-ion batteries, Sustainability, 14, 7412, 10.3390/su14127412
International Energy Agency, 2021
European Environment Agency, 2021
Lotfi, 2017, AC versus DC microgrid planning, IEEE Trans. Smart Grid, 8, 296, 10.1109/TSG.2015.2457910
Dragičević, 2016, DC microgrids—Part I: A review of control strategies and stabilization techniques, IEEE Trans. Power Electron., 31, 4876
Salomonsson, 2008, An adaptive control system for a DC microgrid for data centers, IEEE Trans. Ind. Appl., 44, 1910, 10.1109/TIA.2008.2006398
Sasidharan, 2017, A novel single-stage single-phase reconfigurable inverter topology for a solar powered hybrid AC/DC home, IEEE Trans. Ind. Electron., 64, 2820, 10.1109/TIE.2016.2643602
Jung, 2013, Optimal operation plan of the online electric vehicle system through establishment of a DC distribution system, IEEE Trans. Power Electron., 28, 5878, 10.1109/TPEL.2013.2251667
Shrivastava, 2019, Design and techno-economic analysis of plug-in electric vehicle-integrated solar PV charging system for India, IET Smart Grid, 2, 224, 10.1049/iet-stg.2018.0079
Park, 2013, Fault detection and isolation in low-voltage DC-bus microgrid system, IEEE Trans. Power Deliv., 28, 779, 10.1109/TPWRD.2013.2243478
Xiao, 2015, Hierarchical control of hybrid energy storage system in DC microgrids, IEEE Trans. Ind. Electron., 62, 4915, 10.1109/TIE.2015.2400419
Zhang, 2011, Start-up process and step response of a DC–DC converter loaded by constant power loads, IEEE Trans. Ind. Electron., 58, 298, 10.1109/TIE.2010.2045316
Ahmadi, 2014, Improving the performance of a line regulating converter in a converter-dominated DC microgrid system, IEEE Trans. Smart Grid, 5, 2553, 10.1109/TSG.2014.2319267
Tabari, 2014, Stability of a DC distribution system for power system integration of plug-in hybrid electric vehicles, IEEE Trans. Smart Grid, 5, 2564, 10.1109/TSG.2014.2331558
Kwasinski, 2010, Dynamic behavior and stabilization of DC microgrids with instantaneous constant-power loads, IEEE Trans. Power Electron., 26, 822, 10.1109/TPEL.2010.2091285
Rai, 2021, Hardy space nonlinear controller design for DC microgrid with constant power loads, Int. J. Electr. Power Energy Syst., 133, 10.1016/j.ijepes.2021.107300
Srinivasan, 2020, Control analysis of parallel DC-DC converters in a DC microgrid with constant power loads, Int. J. Electr. Power Energy Syst., 122, 10.1016/j.ijepes.2020.106207
Emadi, 2006, Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives, IEEE Trans. Veh. Technol., 55, 1112, 10.1109/TVT.2006.877483
Rivetta, 2006, Analysis and control of a buck DC-DC converter operating with constant power load in sea and undersea vehicles, IEEE Trans. Ind. Appl., 42, 559, 10.1109/TIA.2005.863903
Hossain, 2018, Stability improvement of microgrids in the presence of constant power loads, Int. J. Electr. Power Energy Syst., 96, 442, 10.1016/j.ijepes.2017.10.016
Cespedes, 2011, Constant-power load system stabilization by passive damping, IEEE Trans. Power Electron., 26, 1832, 10.1109/TPEL.2011.2151880
Radwan, 2012, Linear active stabilization of converter-dominated DC microgrids, IEEE Trans. Smart Grid, 3, 203, 10.1109/TSG.2011.2162430
Lu, 2015, Stability enhancement based on virtual impedance for DC microgrids with constant power loads, IEEE Trans. Smart Grid, 6, 2770, 10.1109/TSG.2015.2455017
Wu, 2015, A novel stabilization method of LC input filter with constant power loads without load performance compromise in DC microgrids, IEEE Trans. Ind. Electron., 62, 4552, 10.1109/TIE.2014.2367005
Liu, 2007, Negative input-resistance compensator for a constant power load, IEEE Trans. Ind. Electron., 54, 3188, 10.1109/TIE.2007.896474
Mohamed, 2012, Decoupled reference-voltage-based active DC-link stabilization for PMSM drives with tight-speed regulation, IEEE Trans. Ind. Electron., 59, 4523, 10.1109/TIE.2011.2182013
Zhang, 2019, Output impedance modeling and high-frequency impedance shaping method for distributed bidirectional DC–DC converters in DC microgrids, IEEE Trans. Power Electron., 35, 7001, 10.1109/TPEL.2019.2953813
Lin, 2022, Low-frequency oscillation analysis of virtual-inertia-controlled DC microgrids based on multi-timescale impedance model, IEEE Trans. Sustain. Energy, 10.1109/TSTE.2022.3157473
Hussain, 2019, A novel feedforward stabilizing technique to damp power oscillations caused by DC–DC converters fed from a DC bus, IEEE J. Emerg. Sel. Top. Power Electron., 8, 1528, 10.1109/JESTPE.2019.2898354
Potty, 2019, Smart resistor: Stabilization of DC microgrids containing constant power loads using high-bandwidth power converters and energy storage, IEEE Trans. Power Electron., 35, 957, 10.1109/TPEL.2019.2910527
Riccobono, 2012, Comprehensive review of stability criteria for DC distribution systems, 3917
Barabanov, 2015, On existence and stability of equilibria of linear time-invariant systems with constant power loads, IEEE Trans. Circuits Syst. I. Regul. Pap., 63, 114, 10.1109/TCSI.2015.2497559
Sanchez, 2014, Conditions for existence of equilibria of systems with constant power loads, IEEE Trans. Circuits Syst. I. Regul. Pap., 61, 2204, 10.1109/TCSI.2013.2295953
Anand, 2012, Reduced-order model and stability analysis of low-voltage DC microgrid, IEEE Trans. Ind. Electron., 60, 5040, 10.1109/TIE.2012.2227902
Tahim, 2014, Modeling and stability analysis of islanded DC microgrids under droop control, IEEE Trans. Power Electron., 30, 4597, 10.1109/TPEL.2014.2360171
Islam, 2021, Selection of capacitance for stable operation of low power DC system with constant power loads, IET Gener. Transm. Distrib., 15, 809, 10.1049/gtd2.12060
Erickson, 2007
Guo, 2009, Evaluation of DSP-based PID and fuzzy controllers for DC–DC converters, IEEE Trans. Ind. Electron., 56, 2237, 10.1109/TIE.2009.2016955
Hassan, 2022, DC shipboard microgrids with constant power loads: A review of advanced nonlinear control strategies and stabilization techniques, IEEE Trans. Smart Grid, 10.1109/TSG.2022.3168267
Zeng, 2013, An interconnection and damping assignment passivity-based controller for a DC–DC boost converter with a constant power load, IEEE Trans. Ind. Appl., 50, 2314, 10.1109/TIA.2013.2290872
Khaligh, 2008, Modified pulse-adjustment technique to control DC/DC converters driving variable constant-power loads, IEEE Trans. Ind. Electron., 55, 1133, 10.1109/TIE.2007.909757
Xu, 2019, An offset-free composite model predictive control strategy for DC/DC buck converter feeding constant power loads, IEEE Trans. Power Electron., 35, 5331, 10.1109/TPEL.2019.2941714
Dehghani, 2021, Stabilization of DC/DC converter with constant power load using exact feedback linearization method based on backstepping sliding mode control and nonlinear disturbance observer, 1
Vafamand, 2018, Adaptive TS fuzzy-based MPC for DC microgrids with dynamic CPLs: Nonlinear power observer approach, IEEE Syst. J., 13, 3203, 10.1109/JSYST.2018.2880135
Jiang, 2020, Combined sliding-mode control for the IFDBC interfaced DC microgrids with power electronic loads, IEEE J. Emerg. Sel. Top. Power Electron., 8, 3396, 10.1109/JESTPE.2020.2982564
Fulwani, 2016
Amrr, 2022, Finite-time adaptive sliding mode control of a power converter under multiple uncertainties, Front. Energy Res., 10, 10.3389/fenrg.2022.901606
Jiang, 2019, Large-signal stability of interleave boost converter system with constant power load using sliding-mode control, IEEE Trans. Ind. Electron., 67, 9450, 10.1109/TIE.2019.2955401
Martinez-Treviño, 2019, Sliding-mode control of a boost converter under constant power loading conditions, IET Power Electron., 12, 521, 10.1049/iet-pel.2018.5098
Tahim, 2012, Nonlinear control of DC-DC bidirectional converters in stand-alone DC microgrids, 3068
Tahim, 2012, Nonlinear control of DC-DC bidirectional converters in stand-alone DC microgrids, 3068
Wu, 2019, Adaptive backstepping sliding mode control for boost converter with constant power load, IEEE Access, 7, 50797, 10.1109/ACCESS.2019.2910936
Singh, 2015, Robust sliding-mode control of DC/DC boost converter feeding a constant power load, IET Power Electron., 8, 1230, 10.1049/iet-pel.2014.0534
Zheng, 2020, Composite robust quasi-sliding mode control of DC–DC buck converter with constant power loads, IEEE J. Emerg. Sel. Top. Power Electron., 9, 1455, 10.1109/JESTPE.2020.3021942
Mosayebi, 2020, Intelligent and fast model-free sliding mode control for shipboard DC microgrids, IEEE Trans. Transp. Electrification, 7, 1662, 10.1109/TTE.2020.3048552
Khooban, 2019, A new intelligent hybrid control approach for DC–DC converters in zero-emission ferry ships, IEEE Trans. Power Electron., 35, 5832, 10.1109/TPEL.2019.2951183
Gheisarnejad, 2020, A novel nonlinear deep reinforcement learning controller for DC–DC power buck converters, IEEE Trans. Ind. Electron., 68, 6849, 10.1109/TIE.2020.3005071
Sarrafan, 2020, A novel on-board DC/DC converter controller feeding uncertain constant power loads, IEEE J. Emerg. Sel. Top. Power Electron., 9, 1233, 10.1109/JESTPE.2019.2963417
Kalla, 2017, Adaptive sliding mode control of standalone single-phase microgrid using hydro, wind, and solar PV array-based generation, IEEE Trans. Smart Grid, 9, 6806, 10.1109/TSG.2017.2723845
Zhang, 2022, Decentralized coordination and stabilization of hybrid energy storage systems in DC microgrids, IEEE Trans. Smart Grid, 13, 1751, 10.1109/TSG.2022.3143111
Cecilia, 2021, Detection and mitigation of false data in cooperative DC microgrids with unknown constant power loads, IEEE Trans. Power Electron., 36, 9565, 10.1109/TPEL.2021.3053845
Asadi, 2020, Fault reconstruction of islanded nonlinear DC microgrids: An LPV-based sliding mode observer approach, IEEE J. Emerg. Sel. Top. Power Electron., 9, 4606, 10.1109/JESTPE.2020.3043491
Gui, 2020, Improved DC-link voltage regulation strategy for grid-connected converters, IEEE Trans. Ind. Electron., 68, 4977, 10.1109/TIE.2020.2989720
Benadero, 2015, Nonlinear analysis of interconnected power converters: A case study, IEEE J. Emerg. Sel. Top. Circuits Syst., 5, 326, 10.1109/JETCAS.2015.2462017
Alipour, 2022, Observer-based backstepping sliding mode control design for microgrids feeding a constant power load, IEEE Trans. Ind. Electron.
Azimi, 2020, Voltage/current large transient suppression in DC microgrids using local information and active stabilizing capability, IEEE Syst. J., 14, 1109, 10.1109/JSYST.2019.2920926
Tan, 2006, A unified approach to the design of PWM-based sliding-mode voltage controllers for basic DC-DC converters in continuous conduction mode, IEEE Trans. Circuits Syst. I. Regul. Pap., 53, 1816, 10.1109/TCSI.2006.879052
Hashemzadeh, 2022, An ultra high step-up dual-input single-output DC–DC converter based on coupled inductor, IEEE Trans. Ind. Electron., 69, 11023, 10.1109/TIE.2021.3123636