Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp tối ưu hóa miễn dịch dựa trên xếp hạng đua thích nghi để giải quyết lập trình giá trị kỳ vọng đa mục tiêu
Tóm tắt
Nghiên cứu này điều tra một phương pháp tối ưu hóa miễn dịch lấy cảm hứng từ sinh học và phương pháp lấy mẫu thích nghi để giải quyết loại lập trình giá trị kỳ vọng phi tuyến đa mục tiêu mà không cần phân phối nhiễu trước. Đầu tiên, một ước lượng giới hạn dưới hữu ích được phát triển để hạn chế kích thước mẫu của các biến ngẫu nhiên. Thứ hai, một sơ đồ xếp hạng đua thích nghi được thiết kế để xác định những cá thể giá trị trong quần thể hiện tại, từ đó những cá thể chất lượng cao trong quá trình tìm kiếm giải pháp có thể nhận được kích thước mẫu lớn và mức độ quan trọng cao. Sau đó, một phương pháp tối ưu hóa lấy cảm hứng từ miễn dịch được xây dựng để tìm kiếm các giải pháp tối ưu $$\varepsilon $$-Pareto, dựa vào một mô hình bậc polymer hóa mới. Các thí nghiệm so sánh đã xác nhận rằng phương pháp đề xuất có hiệu quả cao, là một đơn vị tối ưu hóa cạnh tranh.
Từ khóa
#tối ưu hóa miễn dịch; lập trình giá trị kỳ vọng; phi tuyến; xếp hạng đua thích nghi; mẫu thích nghi; giải pháp tối ưu $$\varepsilon $$-ParetoTài liệu tham khảo
Aickelin U, Dasgupta D, Gu F (2014) Artificial immune systems. Search Methodologies. Springer US, pp 187–211
Aydin I, Karakose M, Akin E (2011) A multi-objective artificial immune approach for parameter optimization in support vector machine. Appl Soft Comput 11:120–129
Batista LS, Campelo F, Guimarães FG et al (2011) Pareto cone \(\varepsilon \)-dominance: improving convergence and diversity in multiobjective evolutionary approaches. In: Evolutionary multi-criterion optimization, Springer, Berlin, pp 76–90
Bui LT et al (2005) Fitness inheritance for noisy evolutionary multi-objective optimization. In: The 7th annual conference on genetic and evolutionary computation, ACM, pp 779–785
Cantú-Paz E (2004) Adaptive sampling for noisy problems. In: Genetic and evolutionary computation conference, GECCO2004, pp 947–958
Chen CH (2003) Efficient sampling for simulation-based optimization under uncertainty. In: Fourth International symposium on uncertainty modeling and analysis, ISUMA’03, pp 386–391
Coello CAC, Cortés NC (2005) Solving multi-objective optimization problems using an artificial immune system. Genet Program Evol Mach 6:163–190
Corne DW, Jerram NR, Knowles JD et al (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Genetic and evolutionary computation conference, GECCO’2001, pp 283–290
Deb K et al (2002) A fast and elitist multi-objective genetic approach: NSGA-II. IEEE Trans Evol Comput 6:182–197
Drugan MM, Nowe A (2013) Designing multi-objective multi-armed bandits approaches: a study. In: International joint conference on neural networks, IJCNN, pp 1–8
El-Wahed WFA, Lee SM (2006) Interactive fuzzy goal programming for multi-objective transportation problems. Omega 34(2):158–166
Eskandari H, Geiger CD (2009) Evolutionary multi-objective optimization in noisy problem environments. J Heuristics 15:559–595
Even-Dar E, Mannor S, Mansour Y (2006) Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. J Mach Learn Res 7:1079–1105
Gong MG, Jiao LC, Du HF, Bo LF (2008) Multi-objective immune approach with nondominated neighbor-based selection. Evol Comput 16:225–255
Gong MG et al (2013) Identification of multi-resolution network structures with multi-objective immune approach. Appl Soft Comput 13:1705–1717
Gutjahr WJ, Pichler A (2016) Stochastic multi-objective optimization: a survey on non-scalarizing methods. Ann Oper Res 236:475–499
Higle JL, Zhao L (2004) Adaptive and nonadaptive samples in solving stochastic linear programs: a computational investigation. The University of Arizona, Tucson
Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301):13–30
Hu ZH (2010) A multiobjective immune approach based on a multiple-affinity model. Eur J Oper Res 202:60–72
Hughes EJ (2001) Constraint handling with uncertain and noisy multi-objective evolution. In: Congress on evolutionary computation 2001, CEC’2001, pp 963–970
Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments: a survey. IEEE Trans Evol Comput 9:303–317
Lee LH et al (2010) Finding the nondominated Pareto set for multi-objective simulation models. IIE Trans 42:656–674
Lee LH, Pujowidianto NA, Li LW et al (2012) Approximate simulation budget allocation for selecting the best design in the presence of stochastic constraints. IEEE Trans Autom Control 57:2940–2945
Lin Q, Chen J (2013) A novel micro-population immune multi-objective optimization approach. Comput Oper Res 40:1590–1601
Liu B (2009) Theory and practice of uncertain programming. Physica, Heidelberg
Marler RT, Arora JS (2010) The weighted sum method for multi-objective optimization: new insights. Struct Multidiscip Optim 41(6):853–862
Owen J, Punt J, Stranford S (2013) Kuby immunology, 7th edn. Freeman, New York
Park T, Ryu KR (2011) Accumulative sampling for noisy evolutionary multi-objective optimization. In: the 13th annual conference on Genetic and evolutionary computation, ACM, pp 793–800
Phan DH, Suzuki J (2012) A non-parametric statistical dominance operator for noisy multi-objective optimization. In: Simulated evolution and learning, SEAL’12, pp 42–51
Qi Y, Liu F, Liu M et al (2012) Multi-objective immune approach with Baldwinian learning. Appl Soft Comput 12:2654–2674
Qi Y, Hou Z, Yin M et al (2015) An immune multi-objective optimization approach with differential evolution inspired recombination. Appl Soft Comput 29:395–410
Robert C, Casella G (2013) Monte Carlo statistical methods. Springer, Berlin
Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. SIAM-MPS Philadelphia
Tan KC, Lee TH, Khor EF (2001) Evolutionary approaches with dynamic population size and local exploration for multiobjective optimization. IEEE Trans Evol Comput 5:565–588
Tan KC, Goh CK, Mamun AA et al (2008) An evolutionary artificial immune system for multi-objective optimization. Eur J Oper Res 187:371–392
Trautmann H, Mehnen J, Naujoks B (2009) Pareto-dominance in noisy environments. In IEEE congress on evolutionary computation(CEC’09), pp 3119–3126
Van Veldhuizen DA (1999) Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Ph. D. Thesis, OH: Air force Institute of Technology, Technical Report No. AFIT/DS/ENG/99-01, Dayton
Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731
Zhang ZH, Tu X (2007a) Immune approach with adaptive sampling in noisy environments and its application to stochastic optimization problems. IEEE Comput Intell Mag 2:29–40
Zhang ZH, Tu X (2007b) Probabilistic dominance-based multi-objective immune optimization approach in noisy environments. J Comput Theor Nanosci 4:1380–1387
Zhang ZH, Wang L, Liao M (2013a) Adaptive sampling immune approach solving joint chance-constrained programming. J Control Theory Appl 11:237–246
Zhang ZH, Wang L, Long F (2013b) Immune optimization approach solving multi-objective chance constrained programming. Evol Syst 6:41–53
Zhang W, Xu W, Liu G, et al (2015) An effective hybrid evolutionary approach for stochastic multiobjective assembly line balancing problem. J Intell Manuf 1–8. doi:10.1007/s10845-015-1037-5
Zheng JH et al (2004) A multi-objective genetic approach based on quick sort. Advances in Artificial Intelligence. Springer, Berlin
Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary approaches: empirical results. Evol Comput 8:173–195
Zitzler E, Thiele L (1999) Multi-objective evolutionary approaches: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271