Adaptive observer for estimating the parameters of an HIV model with mutants
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. A. Nowak, S. Bonhoeffer, G. M. Shaw, and R. M. May, “Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations,” Journal of Theoretical Biology, vol. 184, no. 2, pp. 203–217, January 1997.
M. A. Nowak and R. M. May, Virus Dynamics, Mathematical Principles of Immunology and Virology, Oxford University Press, 2000.
H. Chang and A. Astolfia, “Enhancement of the immune system in HIV dynamics by output feedback,” Automatica, 45, no. 7, pp. 1765–1770, 2009,.
H. T. Banks, T. Jang, H.-D. Kwon, “Feedback control of HIV antiviral therapy with long measurement time,” International Journal of Pure and Applied Mathematics, vol. 66, no. 4, pp. 461–485, 2011.
J. David, H. Tran, and H. T. Banks, “Receding horizon control of HIV,” Optimal Control Applications and Methods, vol. 32, no. 6, pp. 681–699, 2011.
H. Shim, S.-J. Han, C. C. Chung, S. W. Nam, and J. H. Seo, “Optimal scheduling of drug treatment for HIV infection: continuous dose control and receding horizon control,” International Journal of Control, Automation, and Systems, vol. 1, no. 3, pp. 282–288, 2003.
X. Xia and C. H. Moog, “Identifiability of nonlinear systems with applications to HIV/AIDS models,” IEEE Trans. on Automatic Control, vol. 48, no. 2, pp. 330–336, February 2003.
Y. Huang, D. Liu, and H. Wu, “Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system,” Biometrics, vol. 62, no. 2, pp. 413–423, 2006.
H. Putter, S. H. Heisterkamp, J. M. A. Lange, and F. de Wolf, “A Bayesian approach to parameter estimation in HIV dynamical models,” Statistics in Medicine, vol. 21, no. 15, pp. 2199–2214, 2002.
H. Miao, C. Dykes, L. M. Demeter, J. Cavenaugh, S. Y. Park, A. S. Perelson, and H. Wu, “Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-based growth competition experiments,” Bulletin of Mathematical Biology, vol. 70, no. pp. 1749–1771, 2008.
H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, 2002.
R. S. Braithwaite, S. Shechter, C.-C. H. Chang, A. Schaefer, and M. S. Roberts, “Estimating the rate of accumulating drug resistance mutations in the HIV genome,” Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research, vol. 10, no. 3, pp. 204–213, May 2007.
R. Marino and P. Tomei, Nonlinear Control Design, Prentice Hall, 1995.
Q. Zhang, “Adaptive observer for MIMO linear time-varying systems,” IEEE Trans. on Automatic Control, vol. 47, no. 3, pp. 525–529, March 2002.
J. H. Lee and T.-W Yoon, “An HIV model with CTL and drug-resistant mutants, and optimal drug scheduling,” Proc. of Information and Control Symposium (in Korean), pp. 135–137, May 2009.
S. Bonhoeffer, R. M. May, G. M. Shaw, and M. A. Nowak, “Virus dynamics and drug therapy,” Proc. of the National Academy of Science, vol. 94, no. 13, pp. 6971–6976, June 1997.
H.-D. Kwon, “Optimal treatment strategies derived from a HIV model with drug-resistant mutants,” Applied Mathematics and Computation, no. 188, pp. 1193–1204, 2007.
World Health Organization, Laboratory Guidelines for Enumerating CD4 T Lymphocytes, Regional Office for South-East Asia New Delhi, 2007.
R. Luo, M. J. Piovoso, J. Martinez-Picado, and R. Zurakowski, “Optimal antiviral switching to minimize resistance risk in HIV therapy,” PLoS One, vol. 6, no. 11, pp. 1–9, November 2011.
H. Wu, H. Zhu, H. Miao, and A. S. Perelson, “Parameter identifiability and estimation of HIV/AIDS dynamic models,” Bulletin of Mathematical Biology, vol. 70, no. 3, pp. 785–799, 2008.
S. T. Glad, “Solvability of differential algebraic equations and inequalities: an algorithm,” Proc. of European Control Conference, 1997.
G. Conte, C. H. Moog, and A. M. Perdon, Nonlinear Control Systems: An Algebraic Setting, Springer, London, 1999.
W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1976.
M. Krstic, L. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, Wiley-Interscience, 1995.
A. Ilchmann, D. H. Owens, and D. Pratzel-Wolters, “Sufficient conditions for stability of linear timevarying systems,” Systems & Control Letters, vol. 9, no. 2, 1987.
S.-K. Kim, C.-N. Kim, and T.-W. Yoon, “Output feedback parameter estimation for a HIV model with mutants,” Proc. of the 31st IASTED International Conference on Modelling, Identification, and Control, pp. 399–405, February 2011.