Adaptive evolution to the natural and anthropogenic environment in a global invasive crop pest, the cotton bollworm
Tài liệu tham khảo
Bradshaw, 2016, Massive yet grossly underestimated global costs of invasive insects, Nat. Commun., 7, 12986, 10.1038/ncomms12986
Early, 2016, Global threats from invasive alien species in the twenty-first century and national response capacities, Nat. Commun., 7, 12485, 10.1038/ncomms12485
Bock, 2015, What we still don't know about invasion genetics, Mol. Ecol., 24, 2277, 10.1111/mec.13032
Gu, 2021, Climate-driven flyway changes and memory-based long-distance migration, Nature, 591, 259, 10.1038/s41586-021-03265-0
Lovell, 2021, Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass, Nature, 590, 438, 10.1038/s41586-020-03127-1
Orteu, 2020, The genomics of coloration provides insights into adaptive evolution, Nat. Rev. Genet., 21, 503, 10.1038/s41576-020-0249-5
Sinding, 2020, Arctic-adapted dogs emerged at the Pleistocene-Holocene transition, Science, 368, 1495, 10.1126/science.aaz8599
Bertelsmeier, 2018, Bridgehead effects and role of adaptive evolution in invasive populations, Trends Ecol. Evol., 33, 527, 10.1016/j.tree.2018.04.014
Tay, 2019, Going global - genomic insights into insect invasions, Curr. Opin. Insect Sci., 31, 123, 10.1016/j.cois.2018.12.002
Kriticos, 2015, The potential distribution of invading Helicoverpa armigera in North America: is it just a matter of time?, PLoS One, 10, e0133224, 10.1371/journal.pone.0133224
Jones, 2019, Movement ecology of pest Helicoverpa: implications for ongoing spread, Annu. Rev. Entomol., 64, 277, 10.1146/annurev-ento-011118-111959
Wu, 2005, The evolution of cotton pest management practices in China, Annu. Rev. Entomol., 50, 31, 10.1146/annurev.ento.50.071803.130349
Liu, 2010, Pupal diapause of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) mediated by larval host plants: pupal weight is important, J. Insect Physiol., 56, 1863, 10.1016/j.jinsphys.2010.08.007
Jones, 2015, Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest, Mol. Ecol., 24, 4901, 10.1111/mec.13362
Wilson, 2018, The management of insect pests in Australian cotton: an evolving story, Annu. Rev. Entomol., 63, 215, 10.1146/annurev-ento-020117-043432
Xiao, 2021, Rapid spread of a densovirus in a major crop pest following wide-scale adoption of Bt-cotton in China, Elife, 10, e66913, 10.7554/eLife.66913
Anderson, 2016, Population structure and gene flow in the global pest, Helicoverpa armigera, Mol. Ecol., 25, 5296, 10.1111/mec.13841
Behere, 2013, Population genetic structure of the cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers, PLoS One, 8, e53448, 10.1371/journal.pone.0053448
Chen, 2013, Geographic variation in diapause induction and termination of the cotton bollworm, Helicoverpa armigera Hubner (Lepidoptera: Noctuidae), J. Insect Physiol., 59, 855, 10.1016/j.jinsphys.2013.06.002
Chen, 2012, Inheritance of photoperiodic control of pupal diapause in the cotton bollworm, Helicoverpa armigera (Hubner), J. Insect Physiol., 58, 1582, 10.1016/j.jinsphys.2012.09.013
Sheng, 2019, Agricultural production and food consumption in China: a long-term projection, China Econ. Rev., 53, 15, 10.1016/j.chieco.2018.08.006
Pearce, 2017, Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species, BMC Biol., 15, 63, 10.1186/s12915-017-0402-6
Anderson, 2018, Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa, Proc. Natl. Acad. Sci. USA, 115, 5034, 10.1073/pnas.1718831115
Cheng, 2017, Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest, Nat. Ecol. Evol., 1, 1747, 10.1038/s41559-017-0314-4
You, 2020, Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore, Nat. Commun., 11, 2321, 10.1038/s41467-020-16178-9
Ji, 2020, Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee, Sci. Adv., 6, eabd3590, 10.1126/sciadv.abd3590
Pavlidis, 2013, SweeD: likelihood-based detection of selective sweeps in thousands of genomes, Mol. Biol. Evol., 30, 2224, 10.1093/molbev/mst112
Joußen, 2012, Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3, Proc. Natl. Acad. Sci. USA, 109, 15206, 10.1073/pnas.1202047109
Rasool, 2014, An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan, Insect Biochem. Molec., 53, 54, 10.1016/j.ibmb.2014.07.006
Fulton, 2001, Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects, Environ. Toxicol. Chem., 20, 37, 10.1002/etc.5620200104
Ragland, 2019, Evolutionary and functional genetics of insect diapause: a call for greater integration, Curr. Opin. Insect Sci., 36, 74, 10.1016/j.cois.2019.08.003
Xu, 2012, Cross-talk between the fat body and brain regulates insect developmental arrest, Proc. Natl. Acad. Sci. USA, 109, 14687, 10.1073/pnas.1212879109
Lasky, 2015, Genome-environment associations in sorghum landraces predict adaptive traits, Sci. Adv., 1, e1400218, 10.1126/sciadv.1400218
Kozak, 2019, Genomic basis of circannual rhythm in the European corn borer moth, Curr. Biol., 29, 3501, 10.1016/j.cub.2019.08.053
Williams, 2006, Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase, Proc. Natl. Acad. Sci. USA, 103, 15911, 10.1073/pnas.0604592103
Zhang, 2017, Reactive oxygen species extend insect life span using components of the insulin-signaling pathway, Proc. Natl. Acad. Sci. USA, 114, E7832, 10.1073/pnas.1711042114
Li, 2017, TGF-beta signaling regulates p-Akt levels via PP2A during diapause entry in the cotton bollworm, Helicoverpa armigera, Insect Biochem. Molec., 87, 165, 10.1016/j.ibmb.2017.07.003
Kanamori, 2010, The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues, Insect Biochem. Molec., 40, 30, 10.1016/j.ibmb.2009.12.006
Walsh, 2022, Determinants of insecticide resistance evolution: comparative analysis among Heliothines, Annu. Rev. Entomol., 67, 387, 10.1146/annurev-ento-080421-071655
Wang, 2018, Managing pests after 15 years of Bt cotton: farmers' practices, performance and opinions in northern China, Crop Prot., 110, 251, 10.1016/j.cropro.2017.06.007
Wang, 2019, Cytochrome P450-mediated lambda-cyhalothrin-resistance in a field strain of Helicoverpa armigera from Northeast China, J. Agric. Food Chem., 67, 3546, 10.1021/acs.jafc.8b07308
Wang, 2018, CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides, Nat. Commun., 9, 4820, 10.1038/s41467-018-07226-6
Durigan, 2017, High frequency of CYP337B3 gene associated with control failures of Helicoverpa armigera with pyrethroid insecticides in Brazil, Pestic. Biochem. Physiol., 143, 73, 10.1016/j.pestbp.2017.09.005
Zuo, 2021, Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm, PLoS Genet., 17, e1009680, 10.1371/journal.pgen.1009680
Li, 2007, Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics, Annu. Rev. Entomol., 52, 231, 10.1146/annurev.ento.51.110104.151104
Jin, 2019, Transcriptional response of ATP-binding cassette (ABC) transporters to insecticides in the cotton bollworm, Helicoverpa armigera, Pestic. Biochem. Physiol., 154, 46, 10.1016/j.pestbp.2018.12.007
Li, 2014, Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus, Sci. Rep., 4, 6474, 10.1038/srep06474
Liu, 2021, G-protein coupled receptors (GPCRs): signaling pathways, characterization, and functions in insect physiology and toxicology, Int. J. Mol. Sci., 22, 5260, 10.3390/ijms22105260
Taylor, 1996, Molecular population genetics of sodium channel and juvenile hormone esterase markers in relation to pyrethroid resistance in Heliothis virescens (Lepidoptera: Noctuidae), Ann. Entomol. Soc. Am., 89, 728, 10.1093/aesa/89.5.728
Dandan, 2019, Field monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) Cry1Ac insecticidal protein resistance in China (2005-2017), Pest Manag. Sci., 75, 753, 10.1002/ps.5175
Zhang, 2012, Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China, Proc. Natl. Acad. Sci. USA, 109, 10275, 10.1073/pnas.1200156109
Gahan, 2010, An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin, PLoS Genet., 6, e1001248, 10.1371/journal.pgen.1001248
Chen, 2015, Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac, Insect Biochem. Molec., 59, 1, 10.1016/j.ibmb.2015.01.014
Jin, 2018, Dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton, Proc. Natl. Acad. Sci. USA, 115, 11760, 10.1073/pnas.1812138115
Therkildsen, 2019, Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing, Science, 365, 487, 10.1126/science.aaw7271
Wu, 2019, Fall webworm genomes yield insights into rapid adaptation of invasive species, Nat. Ecol. Evol., 3, 105, 10.1038/s41559-018-0746-5
Gonçalves, 2019, Invasion origin, rapid population expansion, and the lack of genetic structure of cotton bollworm (Helicoverpa armigera) in the Americas, Ecol. Evol., 9, 7378, 10.1002/ece3.5123
Valencia-Montoya, 2020, Adaptive introgression across semipermeable species boundaries between local Helicoverpa zea and invasive Helicoverpa armigera moths, Mol. Biol. Evol., 37, 2568, 10.1093/molbev/msaa108
Walsh, 2018, Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera, PLoS One, 13, e0197760, 10.1371/journal.pone.0197760