Adaptive energy preserving methods for partial differential equations

Sølve Eidnes1, Brynjulf Owren1, Torbjørn Ringholm1
1Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway

Tóm tắt

Từ khóa


Tài liệu tham khảo

Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928)

Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134(1–2), 37–57 (2001)

Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32(6), 1839–1875 (1995)

Richtmyer, R.D., Morton, K.W.: Difference methods for initial-value problems. Second edition Interscience Tracts in Pure and Applied Mathematics, vol. 4. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney (1967)

Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer. 20, 1–119 (2011)

Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, vol. 31 of Springer Series in Computational Mathematics, 2nd edn. Springer-Verlag, Berlin (2006). Structure-preserving algorithms for ordinary differential equations

Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6(5), 449–467 (1996)

Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41, 045206 (2008)

Furihata, D., Matsuo, T.: Discrete Variational Derivative Method. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton (2011). A structure-preserving numerical method for partial differential equations

Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the average vector field method. J. Comput. Phys. 231(20), 6770–6789 (2012)

Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33(5), 2318–2340 (2011)

Yaguchi, T., Matsuo, T., Sugihara, M.: An extension of the discrete variational method to nonuniform grids. J. Comput. Phys. 229(11), 4382–4423 (2010)

Yaguchi, T., Matsuo, T., Sugihara, M.: The discrete variational derivative method based on discrete differential forms. J. Comput. Phys. 231(10), 3963–3986 (2012)

Miyatake, Y., Matsuo, T.: A note on the adaptive conservative/dissipative discretization for evolutionary partial differential equations. J. Comput. Appl. Math. 274, 79–87 (2015)

Huang, W., Russell, R.: Adaptive Moving Mesh Methods, vol. 174 of Springer Series in Applied Mathematical Sciences. Springer-Verlag, New York (2010)

Zegeling, P.A.: r-refinement for evolutionary PDEs with finite elements or finite differences. Appl. Numer. Math. 26, 97–104 (1998)

Lee, T., Baines, M., Langdon, S.: A finite difference moving mesh method based on conservation for moving boundary problems. J. Comput. Appl. Math. 288, 1–17 (2015)

Babus̆ka, I., Guo, B.: The h, p and h-p version of the finite element method; basis theory and applications. Adv. Eng. Softw. 15, 159–174 (1992)

McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357(1754), 1021–1045 (1999)

Melenk, J., Babus̆ka, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)

Furihata, D.: Finite difference schemes for u/t = (∂/x) α G/u that inherit energy conservation or dissipation property. J. Comput. Phys. 156(1), 181–205 (1999)

Norton, R.A., McLaren, D.I., Quispel, G.R.W., Stern, A., Zanna, A.: Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete Contin. Dyn. Syst. 35(5), 2079–2098 (2015)

Bauer, M., Joshi, S., Modin, K.: Diffeomorphic density matching by optimal information transport. SIAM J. Imaging Sci. 8(3), 1718–1751 (2015)

Huang, W., Russell, R.: Adaptive mesh movement - the MMPDE approach and its applications. J. Comput. Appl. Math. 128, 383–398 (2001)

Budd, C.J., Huang, W., Russell, R.D.: Adaptivity with moving grids. Acta Numer. 18, 111–241 (2009)

Blom, J., Verwer, J.: On the use of the arclength and curvature monitor in a moving-grid method which is based on the method of lines. Department of Numerical Mathematics [NM]. (8902), 1–15 (1989). https://ir.cwi.nl/pub/5850

Pryce, J.D.: On the convergence of iterated remeshing. IMA J. Numer. Anal. 9(3), 315–335 (1989)

Budd, C.J., Huang, W., Russell, R.D.: Moving mesh methods for problems with blow-up. SIAM J. Sci. Comput. 17(2), 305–327 (1996)

Lu, C., Huang,W., Qiu, J.: An adaptive moving mesh finite element solution of the Regularized Long Wave equation. J. Sci. Comput. 1–23 (2016)