Adaptive dynamic programming for online solution of a zero-sum differential game

Journal of Control Theory and Applications - Tập 9 Số 3 - Trang 353-360 - 2011
Draguna Vrabie1, Frank L. Lewis2
1United Technologies Research Center, East Hartford, USA
2Automation and Robotics Research Institute, University of Texas at Arlington, Fort Worth, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

T. Basar, P. Bernhard. H∞ Optimal Control and Related Minimax Design Problems. Boston: Birkhuser, 1995.

T. Basar, G. J. Olsder. Dynamic Noncooperative Game Theory (Classics in Applied Mathematics 23). 2nd ed. Philadelphia: SIAM, 1999.

J. Doyle, K. Glover, P. Khargonekar, et al. State-space solutions to standard H2 and H∞ control problems. IEEE Transactions on Automatic Control, 1989, 34(8): 831–847

A. A. Stoorvogel. The H∞ Control Problem: A State Space Approach. New York: Prentice Hall, 1992.

K. Zhou, P. P. Khargonekar. An algebraic Riccati equation approach to H∞ optimization. Systems & Control Letters, 1988, 11(2): 85–91.

L. Cherfi, H. Abou-Kandil, H. Bourles. Iterative method for general algebraic Riccati equation. Proceedings of International Conference on Automatic Control and System Engineering, Cairo, Egypt, 2005: 85–88.

T. Damm. Rational Matrix Equations in Stochastic Control. Berlin: Springer-Verlag, 2004.

A. Lanzon, Y. Feng, B. D. O. Anderson, et al. Computing the positive stabilizing solution to algebraic Riccati equations with an indefinite quadratic term via a recursive method. IEEE Transactions on Automation Control, 2008, 53(10): 2280–2291.

M. Abu-Khalaf, F. L. Lewis, J. Huang. Policy iterations and the Hamilton-Jacobi-Isaacs equation for H∞ state feedback control with input saturation. IEEE Transactions on Automatic Control, 2006, 51(12): 1989–1995.

Y. Feng, B. D. O. Anderson, M. Rotkowitz. A game theoretic algorithm to compute local stabilizing solutions to HJBI equations in nonlinear H∞ control. Automatica, 2009, 45(4): 881–888.

A. J. van der Schaft. L 2-gain analysis of nonlinear systems and nonlinear state feedback H∞ control. IEEE Transactions on Automatic Control, 1992, 37(6): 770–784.

R. Sutton. Learning to predict by the method of temporal differences. Machine Learning, 1988, 3(1): 9–44.

P. J. Werbos. Approximate dynamic programming for real-time control and neural modeling. D. White, D. Sofge, eds. Handbook of Intelligent Control, Neural, Fuzzy, and, Adaptive Approaches, New York: Van Nostrand, 1992: 493–525.

C. Watkins. Learning from Delayed Rewards. Ph.D. thesis. Cambridge, U.K.: Cambridge University, 1989.

Q. Wei, H. Zhang. A new approach to solve a class of continuous-time nonlinear quadratic zero-sum game using ADP. Proceedings of IEEE International Conference on Networking, Sensing and Control, New York: IEEE, 2008: 507–512.

D. Vrabie, M. Abu-Khalaf, F. L. Lewis, et al. Continuoustime ADP for linear systems with partially unknown dynamics. Proceedings of Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL), New York: IEEE, 2007: 247–253.

D. Vrabie, O. Pastravanu, F. L. Lewis, et al. Adaptive optimal control for continuous-time linear systems based on policy iteration. Automatica, 2009, 45(2): 477–484.

F. L. Lewis, V. L. Syrmos. Optimal Control. New York: John Wiley & Sons, 1995.

J. Speyer, D. Jacobson. Primer on Optimal Control Theory. Philadelphia: SIAM, 2010.

J. W. Brewer. Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuit and System, 1978, 25(9): 772–781.

Y. Wang, R. Zhou, C. Wen. Robust load-frequency controller design for power systems. IEE Proceedings — C: Generation, Transmission, and Distribution, 1993, 140(1): 11–16.