Adaptive KNN based Recommender System through Mining of User Preferences

Wireless Personal Communications - Tập 97 Số 2 - Trang 2229-2247 - 2017
V. Subramaniyaswamy1, Logesh Ravi1
1School of Computing, SASTRA University, Thanjavur, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acha, B., Serrano, C., Fondón, I., & Gómez-Cía, T. (2013). Burn depth analysis using multidimensional scaling applied to psychophysical experiment data. IEEE Transactions on Medical Imaging, 32, 1111–1120.

Altinçay, H. (2007). Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation. Applied Soft Computing, 7, 1072–1083.

Argentini, A., & Blanzieri, E. (2010). About neighborhood counting measure metric and minimum risk metric. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 763–765.

Barragáns-Martínez, A. B., Costa-Montenegro, E., Burguillo-Rial, J. C., Rey-López, M., Mikic-Fonte, F. A., & Peleteiro-Ramallo, A. (2010). A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Information Sciences, 180, 4290–4311.

Bhatia, N., & Vandana, A. (2010). Survey of nearest neighbor techniques. International Journal of Computer Science and Information Security, 8, 302–305.

Billsus, D. & Pazzani, M. (1998). Learning collaborative information filters. In 15th international conference on machine learning (pp. 46–54).

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the fourteenth annual conference on uncertainty in artificial intelligence, Madison, Wisconsin, USA (pp. 43–52).

Campos, L. M., Fernández-Luna, J. M., Huete, J. F., & Rueda-Morales, M. A. (2010). Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks. International Journal of Approximate Reasoning, 51, 785–799.

Cevikalp, H., Triggs, B., & Polikar, R. (2008). Nearest hyperdisk methods for high-dimensional classification. In W. W. Cohen, A. McCallum & S. T. Roweis (Eds.), ICML (pp. 120–127). ACM.

Cheng, S. T., Chou, C. L., & Horng, G. J. (2013). The adaptive ontology-based personalized recommender system. Wireless Personal Communications, 72(4), 1801–1826.

Chien, J.-T., & Wu, C.-C. (2002). Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1644–1649.

Cho, Y. H., Kim, J. K., & Kim, S. H. (2002). A personalized recommender system based on web usage mining and decision tree induction. Expert Systems with Applications, 23, 329–342.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. In Proceedings of ACM SIGIR workshop on recommender systems, August.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21–27.

Derrac, J., Triguero, I., García, S., & Herrera, F. (2012). Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 42, 1383–1397.

Díez, J., del Coz, J. J., Luaces, O., & Bahamonde, A. (2008). Clustering people according to their preference criteria. Expert Systems with Applications, 34, 1274–1284.

Domeniconi, C. & Yan, B. (2004). Nearest neighbor ensemble. ICPR (1) (pp. 228–231). IEEE Computer Society. ISBN: 0-7695-2128-2.

Eirinaki, M., Lampos, C., Paulakis, S., & Vazirgiannis, M. (2004). Web personalization integrating content semantics and navigational patterns. In WIDM ‘04: Proceedings of the 6th annual ACM international workshop on Web information and data management (pp. 72–79). New York, NY, USA: ACM Press.

Gao, Q.-B., & Wang, Z.-Z. (2007). Center-based nearest neighbor classifier. Pattern Recognition, 40, 346–349.

Garcin, F., Dimitrakakis, C., & Faltings, B. (2013). Personalized news recommendation with context trees. In Q. Yang, I. King, Q. Li, P. Pu & G. Karypis (Eds.), RecSys (pp. 105–112). ACM.

Guo, H. (1997). Soap: Live recommendations through social agents. In Proceedings of the fifth DELOS workshop on filtering and collaborative filtering, Budapest.

Hernández-Rodríguez, S., Trinidad, J. F. M., & Carrasco-Ochoa, J. A. (2010). Fast k most similar neighbor classifier for mixed data (tree k-MSN). Pattern Recognition, 43, 873–886.

Hu, Q., Zhu, P., Yang, Y., & Yu, D. (2011). Large-margin nearest neighbor classifiers via sample weight learning. Neurocomputing, 74, 656–660.

Khribi, M. K., Jemni, M., & Nasraoui, O. (2009). Automatic recommendations for e-learning personalization based on web usage mining techniques and information retrieval. Educational Technology and Society, 12, 30–42.

Lee, C.-H., Kim, Y.-H., & Rhee, P.-K. (2001). Web personalization expert with combining collaborative filtering and association rule mining technique. Expert Systems with Applications, 21, 131–137.

Li, B., Chen, Y. W., & Chen, Y. Q. (2008). The Nearest Neighbor Algorithm of Local Probability Centers. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 38, 141–154.

Lim, E.-P. & Sun, A. (2005). Web mining—The ontology approach. In Proceedings of the international advanced digital library conference, IADLC’2005.

Liu, C.-L., & Nakagawa, M. (2001). Evaluation of prototype learning algorithms for nearest-neighbor classifier in application to handwritten character recognition. Pattern Recognition, 34, 601–615.

Liu, H., Xing, H., & Zhang, F. (2012). Web personalized recommendation algorithm incorporated with user interest change. Journal of Computational Information Systems, 8, 1383–1390.

Lucas, J. P., Segrera, S., & García, M. N. M. (2012). Making use of associative classifiers in order to alleviate typical drawbacks in recommender systems. Expert Systems with Applications, 39, 1273–1283.

Majumdar, A., & Ward, R. K. (2010). Robust Classifiers for Data Reduced via Random Projections. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 40, 1359–1371.

Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2001). Effective personalization based on association rule discovery from web usage data. In Proceedings of the 3rd international workshop on Web information and data management (WIDM ‘01) (pp. 9–15). New York, NY, USA: ACM.

Moreno, M. N., Segrera, S., Batista, V. F. L., Vicente, M. D. M., & Sánchez, A. L. (2016). Web mining based framework for solving usual problems in recommender systems. A case study for movies’ recommendation. Neurocomputing, 176, 72–80.

Nasraoui, O. & Petenes, C. (2003). An intelligent web recommendation engine based on fuzzy approximate reasoning. In Proceedings of the IEEE international conference on fuzzy systems—Special track on fuzzy logic and the internet.

Otebolaku, A. M., & Andrade, M. T. (2016). Context-aware personalization using neighborhood-based context similarity. Wireless Personal Communications, 94, 1–24.

Parthasarathy, G., & Chatterji, B. N. (1990). A class of new KNN methods for low sample problems. IEEE Transactions on Systems, Man, and Cybernetics, 20, 715–718.

Ravi, L., & Vairavasundaram, S. (2016). A collaborative location based travel recommendation system through enhanced rating prediction for the group of users. Computational Intelligence and Neuroscience, 2016, 1291358:1–1291358:28.

Sáez, J. A., Luengo, J., & Herrera, F. (2013). Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification. Pattern Recognition, 46, 355–364.

Sarwar, B. M., Karypis, G., Konstan, J. A., & Reidl, J. (2001). Item-based collaborative filtering recommendation algorithms. In World Wide Web (pp. 285–295).

Schafer, B. J., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data Mining and Knowledge Discovery, 5, 115–153.

Soloklo, H. N., & Farsangi, M. M. (2013). Multi-objective weighted sum approach model reduction by Routh-Pade approximation using harmony search. Turkish Journal of Electrical Engineering and Computer Sciences, 21(Sup. 2), 2283–2293.

Triguero, I., García, S., & Herrera, F. (2011). Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition, 44, 901–916.

Vairavasundaram, S., Varadharajan, V., Vairavasundaram, I., & Ravi, L. (2015). Data mining-based tag recommendation system: An overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5, 87–112.

Vincent, P. & Bengio, Y. (2001). K-local hyperplane and convex distance nearest neighbor algorithms. In T. G. Dietterich, S. Becker & Z. Ghahramani (Eds.), NIPS (pp. 985–992). MIT Press.

Wang, F.-H., & Shao, H.-M. (2004). Effective personalized recommendation based on time-framed navigation clustering and association mining. Expert Systems with Applications, 27, 365–377.

Wang, Z., Yu, Z., Zhou, X., Chen, C., & Guo, B. (2016). Towards context-aware mobile web browsing. Wireless Personal Communications, 91, 187–203.

Xu, J. A. & Araki, K. (2006). A SVM-based personal recommendation system for TV programs. In Proceedings of the international conference on multi-media modeling conference, Beijing, China (pp. 401–404).

Yang, J.-M., Yu, P.-T., & Kuo, B.-C. (2010). A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data. IEEE Transactions on Geoscience and Remote Sensing, 48, 1279–1293.

Zheng, W., Zhao, L., & Zou, C. (2004). Locally nearest neighbor classifiers for pattern classification. Pattern Recognition, 37, 1307–1309.

Zhou, B., Hui, S., & Chang, K. (2004). An intelligent recommender system using sequential web access patterns. In IEEE conference on cybernetics and intelligent systems (pp. 393–398).

Zhou, Z.-H., & Yu, Y. (2005). Ensembling local learners Through Multimodal perturbation. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35, 725–735.