Adaptive Bone Remodeling and Biomechanical Design Considerations for Noncemented Total Hip Arthroplasty

Orthopedics - Tập 12 Số 9 - Trang 1255-1267 - 1989
R. Huiskes1, H. Weinans2, Michel Dalstra2
1Institute of Orthopedics, University of Nijmegen, The Netherlands.
2University of Nijmegen, The Netherlands

Tóm tắt

ABSTRACT: Clinical problems with noncemented total hip arthroplasty (THA) stems, directly or indirectly related to load transfer, include mid-thigh pain due to relative (micro) motions or excessive endosteal interface stresses, subsidence and loosening due to inadequate primary stability and fit, and proximal femoral bone atrophy due to stress shielding. In this article, the load-transfer mechanisms associated with noncemented THA stems and their resulting stress patterns are discussed in relation to design features, bonding characteristics, and materials choice. Nonlinear finite-element models and computer simulation programs for strain-adaptive bone remodeling have been used for this study. Canalfilling, fully bonded metal stems have been found likely to cause proximal bone atrophy, possibly leading to long-term failure of the implant/bone composite. The use of flexible (isoelastic) materials and/ or press-fit fixation reduces stress shielding, but also reduces the potential for interface stability. The stem material, the stem shape, and the coating geometry interact in relation to the load-transfer mechanism, and it is suggested that optimal combinations of these characteristics can be determined through the computer simulation methods presented.

Từ khóa


Tài liệu tham khảo

1. Johnston RC: The case for cemented hips. Iowa Orthop J 1987; 6:60-64.

2. Huiskes R: New approaches to cemented hip prosthetic design in Buchom G Willert HG (eds): Safety of Implants. Bern Hans Huber Verlag 1989 (in press).

3. Lord GA Bancel P: The madreporic cementless total hip arthroplasty. Clin Orthop 1983; 176:67-76.

4. Engh CA Bobyn JD1 Glassman AH: Porous coated hip replacement: The factors governing bone ingrowth stress shielding and clinical results. J Bone Joint Surg 1987; 69B:45-55.

5. Dutoit M Roquin B de Leyvraz PF et al: Prothèse non cimentée de première intention. Experience a moyem terme avec la prothèse de Lord. Symposium Prothèse Totales de Hanches non Cimentées. Lausanne Décembre 4 1987.

6. Huiskes R: Principles and methods of solid biomechanics in Ducheyne P Hastings G (eds): Functional Behavior of Orthopaedic Materials. Voll: Fundamentals. Boca Raton Fla CRC Press 1984 pp 51-98.

7. Huiskes R: Biomechanics of bone-implant interactions in Schmid-Schoenbein GW et al (eds): Frontiers in Biomechanics. New York Springer- Verlag 1986 pp 245-262.

8. Huiskes R Chao EYS: A survey of finite element methods in orthopaedic biomechanics. J Biomech 1983; 16:385-409.

9. Schimmel JW Huiskes R: Primary fit of the Lord cementless total hip. Acta Orthop Scand 1988; 59(6): 638-642.

10. Zweymuller K Semlttsch M : Concept and material properties of a cementless hip prosthesis stem with ?12?3 ceramic ball heads and wrought TÍ-6A1-4V stems. Arch Orthop Trauma Surg 1982; 12:229-236.

11. Capello WN: The Osteonics prosthesis in Fitzgerald RH Jr (ed): Non-Cemented Total Hip Arthroplasty. New York Raven Press 1988 pp 451-458.

12. Geesink RGT: Hydroxyl-Apatite Coated Hip Implants. Maastricht The Netherlands: University of Limburg; 1988 Dissertation.

13. Crowninshield RD Johnston RC Andrews JG: A biomechanical investigation of the human hip. J Biomech 1978; 11(1-2):75-85.

14. MARC Analysis Corporation Palo Alto. Calif.

15. Roesler H: The history of some fundamental concepts in bone biomechanics. J Biomech 1987; 20(1 1/12): 1025-1034.

16. Carter DR Fyhrie DP. Whalen RT: Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy. J Biomech 1987; 20:785-794.

17. Hart RT Davy DT. Heiple KG: Mathematical modeling and numerical solutions for functionally dependent bone. Calif Tissue Int 1984; 36:S11-S18.

18. Cowin SC Hegedus DH: Bone remodeling I: Theory of adaptive elasticity. J Elasticity 1976; 6:313-326.

19. Huiskes R Weinans H Grootenboer HJ et al: Adaptive boneremodeling theory applied to prosthetic -design analysis. J Biomech 1987; 20(11/12):1135-1150.

20. Carter DR Hayes WC: The behavior of bone as a two-phase porous structure. J Bone Joint Surg 1977; 59A:954-962.

21. Weinans H Huiskes R Grootenboer HJ: Convergence and uniqueness of adaptive bone remodeling. Proceedings 35th Annual Meeting Orthopaedic Research Society Las Vegas 6-9 Feb 1989 p 310.

22. Miller JE Kelebay LC: Bone ingrowth- disuse osteoporosis. Orthop Transact 1981; 5:380.

23. Turner TM Sumner DR Urban RM et al: A comparative study of porous coatings in a weight-bearing total hip-arthroplasty model. J Bone Joint Surg 1986; 68A-.1396-1409.

24. Noble PC Alexander JW Granberry ML et al: The myth of "press-Fit" in the proximal femur. Scientific Exhibit 55th AAOS Atlanta Feb 4-9 1988.

25. Zhou XM Robertson DD Walker PS: Femoral strain patterns with press-fit THR - A photoelastic analysis. Proceedings 34th Annual Meeting Orthopaedic Research Society Atlanta 1-4 Feb 1988. p 350.

26. Huiskes R Weinans H Sumner DR et al: Stress-shielding stress-bypassing and bone resorption around "press-fit" and bone ingrowth THA. Proceedings 35th Annual Meeting Orthopaedic Research Society Las Vegas Nev 6-9 Feb 1989 p 529.

27. Draenert K: Forschung und Fortbildung in der Chirurgie des Bewegungsapparates 2. Munich Art and Science 1988.

28. Jakim I Bariin C Sweet MBE: RM isoelastic total hip arthroplasty. J Arthroplasty 1988; 3(3):191-199.