Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Điều chỉnh phương trình mất mát đất toàn cầu đã được cải tiến để lập bản đồ phân bố không gian của xói mòn đất trong các lưu vực nhiệt đới: Nghiên cứu dựa trên GIS/RS của Lưu vực Sông Upper Mahaweli ở Sri Lanka
Tóm tắt
Xói mòn đất là một vấn đề nghiêm trọng ở các vùng cao nguyên của Sri Lanka, nơi có các hoạt động nông nghiệp rộng rãi. Cần có những phương pháp có thể đánh giá nhanh chóng tình trạng xói mòn đất để xác định những phương pháp bảo tồn phù hợp và theo dõi hiệu quả của chúng nhằm bảo tồn nguồn tài nguyên không thể tái tạo này. Phương pháp phổ biến được sử dụng để xác định tỷ lệ xói mòn đất là thông qua các phép đo thực địa và/hoặc mô hình hóa thực nghiệm. Mặc dù phương pháp sau cùng được sử dụng song song với GIS/Cảm biến từ xa đã trở nên rất phổ biến, nhưng những hạn chế chính của nó là thiếu sự xác thực mô hình và thiếu so sánh giữa các tỷ lệ mô hình hóa với các giá trị giới hạn mất mát đất chấp nhận được. Trong nghiên cứu này, tỷ lệ xói mòn đất của sáu tiểu lưu vực đã được tính toán bằng phương trình mất mát đất toàn cầu đã được cải tiến (RUSLE) theo năm phương pháp khác nhau trong môi trường GIS/RS và sau đó được so sánh với các phép đo thực địa để xác minh. Tỷ lệ xói mòn đất được mô hình hóa trung bình của sáu tiểu lưu vực nằm trong khoảng từ 0,12 đến 7,70 t ha−1 y−1, trong khi tỷ lệ dựa trên thực địa dao động từ 1,14 đến 15,83 t ha−1 y−1. Hơn nữa, các lớp xói mòn được mô hình hóa trong các tiểu lưu vực tương tự như các tỷ lệ xói mòn cục bộ dựa trên thực địa qua các loại hình sử dụng đất khác nhau được định lượng từ các thí nghiệm trên thửa đất. Do đó, chúng tôi khuyến nghị việc tích hợp RUSLE với GIS/RS như một công cụ hiệu quả để lập bản đồ rủi ro xói mòn đất ở quy mô lưu vực. Chúng tôi đề xuất tỷ lệ điển hình là 1 t ha−1 y−1 và giới hạn tối đa là 2 t ha−1 y−1 như mức độ dung nạp tổn thất đất cho khu vực nghiên cứu dựa trên các tỷ lệ sản xuất đất được xác định qua thực nghiệm. Cuối cùng, một bản đồ xói mòn đất của toàn bộ Lưu vực Sông Upper Mahaweli đã được phát triển bằng cách sử dụng phương pháp tốt nhất, và sau đó các tiểu lưu vực của nó đã được xếp hạng theo mức độ nghiêm trọng của xói mòn đất. Phương pháp được áp dụng ở đây có thể được sử dụng như một hướng dẫn trong quản lý đất đai và các chương trình bảo tồn đất.
Từ khóa
#xói mòn đất #phương trình mất mát đất toàn cầu #GIS #cảm biến từ xa #quản lý môi trườngTài liệu tham khảo
Alexander EB (1986) Rates of soil formation from bedrock or consolidated sediments. Phys Geogr 6(1):26–42
Amerikhah AK (2021) Assement of soil erosion patterns using RUSLE model and GIS tools (case study: the border of khuzestan and Chaharmahal province Iran. Model Earth Syst Environ 7:885–895
Asirat Teshome AH (2021) Soil erosion modeling using GIS and revised universal soil loss equation approach: a case study in Guna-tana Landscape, Northern Ethiopia. Model Earth Syst Envrion 7:125–134
Behrens R, Bouchez J, Schuessler JA, Dultz S, Hewawasame T, von Blanckenburg F (2015) Mineralogical transformations set slow weathering rates in low-porosity metamorphic bedrock on mountain slopes in a tropical climate. Chem Geol 411:283–298
Bekele B, Gemi Y (2021) Soil erosion risk and sediment yield assessment with universal loss equation and GIS: in Dijo watershed, Rift valley Basin of Ethiopia. Model Earth Syst Environ 7:273–191
Benavidez R, Jackson B, Maxwell D, Norton K (2018) A review of the (Revised) Universal soil loss equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrol Earth Syst Sci 22:6059–6086
Braun JJ, Descloitres M, Riotte J, Fleury S, Barbiero L, Boeglin JL, Violette A, Lacarce E, Ruiz L, Sekhar M, Kumar MSM, Subramanian S, Dupree B (2009) Regolith mass balance inferred from combined mineralogical, geochemical and geophysical studies: Mule Hole gneissic watershed South India. Geochim Cosmochim Acta 73:935–961
Braun JJ, Marechal JC, Riotte J, Boeglin JL, Bedimo JPB, Ngoupayou JRN, Nyeck B, Robain H, Sekhar M, Audry S, Viers J (2012) Elemental weathering fluxes and saprolite production rate in a Central African lateritic terrain (Nsimi, South Cameroon). Geochim Cosmochim Acta 99:243–270
Brooks RN, Folliott PF, Gregersen HM, Thames JL (1991) Hydrology and the Management of watershed. Iowa State University Press, Ames, Iowa
De Silva P (1986) Development of an erosivity map for Sri Lanka. Unpublished (A research report submitted for the B.Sc. degree). University of Peradeniya, Peradeniya
Dequincey O, Chabaux F, Clauer N, Liewig N, Muller JP (1999) Dating of weathering profiles by radioactive disequilibria: contribution of the study of authigenic mineral fractions. C R Acad Sci Earth Planet Sci 328(10):679–685
Dias BARH, Udayakumara EPN, Jayawardana JMCK, Malavipathirana S, Dissanayake DMSLB (2019) Assessment of Soil Erosion in Uma Oya Catchment, Sri Lanka. J Environ Prof Sri Lanka 8(1):39–51
Dissanayake DMSLB, Morimoto T, Ranagalage M (2018) Accessing the soil erosion rate based on RUSLE model for sustainable land use management: a case study of the Kotmale watershed, Sri Lanka. Model Earth Syst Environ 5:291
Diyabalanage S, Samarakoon KK, Adikari SB, Hewawasam T (2017) Impact of soil and water conservation measures on soil erosion rate and sediment yields in a tropical watershed in the Central Highlands of Sri Lanka. Appl Geogr 79:103–114
El-Swaify SA, Krishnarajah P (1983) What erosion by water is and what it does. In: Carpenter RA (ed) Natural systems for development: what planners need to know. Macmillan Publishing Company, New York, pp 99–161
Eswaran H, Lal R, Reich PF (2001) Land degradation : An overview. In: Bridges EM, Hannam ID, Oldeman LR, Pening de Vries FWT, Scherr SJ, Sompatpanit S (eds) Responses to Land Degradation, 2nd International Conference on Land Degradation and Desertification. Oxford Press, New Delhi, Thailand, pp 20–35
Fayas CM, Abeysingha NS, Nirmaneea KGS, Samaratunga D, Mallawatantri A (2009) Soil loss estimation using rusle model to prioritize erosion control in KELANI river basin in Sri Lanka. Int Soil Water Conserv Res 7:130–137
Granger DE, Kirchner JW, Finkel R (1996) Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. J Geol 104:249–257
Gunatilake HM, Vieth GR (2000) Estimation of on-site cost of soil erosion: a comparison of replacement and productivity change methods. J Soil Water Conserv 55:197–204
Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (1997) The soil production function and landscape equilibrium. Nature 388:358–361
Hewawasam T (2010) Effect of land use in the upper Mahaweli catchment area on erosion, landslides and siltation in hydropower reservoirs of Sri Lanka. J Natl Sci Found Sri Lanka 38(1):3–14
Hewawasam T (2019) A review on weathering, erosion and denudation in the critical zone of central highlands of Sri Lanka - the state under natural and man-made environments. Trans Jpn Geomorphol Union 40(3):203–228
Hewawasam T, Illangasinghe S (2015) Quantifying sheet erosion in agricultural highlands of Sri Lanka by tracking grain-size distributions. Anthropocene 11:25–34
Hewawasam T, Von Blanckenburg F, Schaller M, Kubik W (2003) Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31(7):597–600
Hewawasam T, von Blanckenburg F, Bouchez J, Dixon JL, Schuessler JA, Maekeler R (2013) Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical Highlands of Sri Lanka. Geochim Cosmochim Acta 118:202–230
Hooke RL (2000) On the history of humans as geomorphic agents. Geology 28(9):843–846
Humphreys GS, Wilkinson MT (2007) The soil production function: a brief history and its rediscovery. Geoderma 139:73–78
Jayarathne KDBL, Dayawansa NDK, De Silva RP (2010) GIS based analysis of biophysical and socio - economic factors for land degradation in kandaketiya DS division. Trop Agric Res 21(4):361–367
Jayasekara MJPTM, Kadupitiya HK, Vitharana UWA (2018) Mapping of Soil Erosion Hazard Zones of Sri Lanka. Trop Agric Res 29(2):135–146
Joshua WD (1977) Soil erosive power of rainfall in the different climatic zones of Sri Lanka. Eros Solid Matter Trans Inland Waters 122:51–61
Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104(2–4):424–439
Li L, Du S, Wu L, Liu G (2009) An overview of soil loss tolerance. CATENA 78:93–99
Mapa RB, Somasiri S, Nagaraja S (1999) Soils of the wet zone of Sri Lanka (morphology, characteristics and classification). Soil Science society of Sri Lanka, Peradeniya
Mark AN, Yun X, Baoyuan L, Yu Y (2017) Natural and anthropogenic rates of soil erosion. Int Soil Water Conserv Res 5:77–84
McCool DK, Brown LC, Foster GR, Mutchler CK, Meyer LD (1987) Revised slope steepness factor for the Universal Soil Loss Equation. Trans ASAE 30(5):1387–1396
Momm HG, Bingner RL, Wells RR, Wilcox D (2012) AGNPS GIS-based tool for watershed-scale identification and mapping of cropland potential ephemeral gullies. Appl Eng Agric 28:17–29
Moore ID, Burch GJ (1985) Physical basis of length-slope factor in the universal soil loss equation. Soil Sci Soc A.M.J. 50
Moore ID, Burch GJ (1986) Physical basis of length-slope factor in the universal soil loss equation. Soil Water Manage Conserv
Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conser 47(5):423–428
Nagle GN, Fahey TJ, Lassoie JP (1999) Management of sedimentation in tropical watersheds. Environ Manage 23:441–452
Panagosa P, Borrelli P, Meusburgerb K, Alewellb C, Lugatoa E, Montanarellaa L (2015) Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48:38–50
Panditharathne DLD, Abeysingha NS, Nirmanee KGS, Mallawatantri A (2019) Application of Revised Universal Soil Loss Equation (RUSLE) Model to Assess Soil Erosion in “Kalu Ganga” River Basin in Sri Lanka. Appl Environ Soil Sci
Perera KHK, Udeshani WAC, Piyathilake IDUH, Wimalasiri GEM, Kadupitiya HK, Udayakumara EPN, Gunatilake SK (2020) Assessing soil quality and soil erosion hazards in the Moneragala District, Sri Lanka. SN Appl Sci 2:2175. https://doi.org/10.1007/s42452-020-03926-1
Piyathilake DUH, Sumudumali RGI, Udayakumara EPN, Ranaweera LV, Jayawardana JMCK, Gunatilake SK (2020) Modeling predictive assessment of soil erosion related hazards at the Uva province in Sri Lanka. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-00944-1
Ratan Kumar Samanta GS (2016) Spatial modelling of soil erosion susceptibility mapping in lower basin of Subarnarekha river (India) based on geospatial. Model Earth Syst Environ 2:1
Ratnayake U, Herath S (2005) Changing rainfall and its impact on landslides in Sri Lanka. J Mt Sci 2:218–224
Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46(1):30–33
Renard K, Foster G, Weesies G, McCool D, Yoder D (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric Handb 703:384
Riebe CS, Kirchner JW, Finkel RC (2003) Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim Cosmochim Acta 67:4411
Roose E (1996) Land husbandry - components and strategy. Food and Agriculture Organization of the United Nations, Rome
Schaub D, Prasuhn V (1998) A map on soil erosion on arable land as a planning tool for sustainable land use in Switzerland. In: Advances in Geoecology (Vol. Towards Sustainable Land Use, Volumes I and II—Furthering Cooperation between People and Institutions pp. 161–168)
Senanayake K (1993) Causes and mechanism of landslides in Sri Lanka. In: Chowdhury RN, Sivakumar SM (eds) Environmental management, geo-water and engineering aspects. Rotterdam, Balkema, pp 323–326
Senanayake SS, Munasinghe MAK, Wickramasinghe WMADB (2013) Use of erosion hazard assessments for regional scale crop suitability mapping in the Uva Province. Ann Sri Lanka Dep Agric 15:127–141
Senanayake S, Pradhan B, Huete A, Brennan J (2020) Assessing soil erosion hazards using land-use change and landslide frequency ratio method: a case study of Sabaragamuwa province, Sri Lanka. Remote Sens 12:1483
Stocking MA (1992) Soil erosion in the Upper Mahaweli catchment. Environment and Forest Conservation Division Mahaweli Authority of Sri Lanka, Polgolla, p 56
Stocking M, Clark R (1999) Soil productivity and erosion: biophysical and farmer-perspective assessment for hillslopes. Mt Res Dev 19(3):191–202
Summerfield MA, Hulton NJ (1994) Natural controls of fluvial denudation rate in major world drainage basins. J Geophys Res 99(B7):13871–13883
Thuraisingham K, Weerasinghe VPA (2009) Soil erosion study for Bibili Oya watershed in Kelani river basin. In Water Professional’s Day Symposium. Postgraduate Institute of Agriculture, University of Peradeniya., Postgraduate Institute of Agriculture, University of Peradeniya. p. 16
Toy TJ, Foster GR, Renard KG (2002) Soil erosion: processes, predictions, measurements, and control. John Wiley and Sons, New York
Trimble SW (1999) Decreased rates of alluvial sediment storage in the Coon Creek Basin, Wisconsin, 1975-93. Science 285(#5431):1244–1246
Trimble SW, Crosson P (2000) U.S. soil erosion rates-myth and reality. Science 289(5477):248–250
Udayakumara EPN, Gunawardena UADP (2016) Reducing siltation and increasing hydropower generation from the rantambe reservoir, Sri Lanka. South Asian Network for Development and Environmental Economics (SANDEE), Nepal, p 20
Udayakumara EPN, Gunewardhana P (2021) Modelling soil erosion and hydropower linkages of Rantambe Reservoir, Sri Lanka: towards payments for ecosystem services. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01169-6
Verheijen FGA, Jones RJA, Rickson RJA, Smith CJ (2009) Tolerable versus actual soil erosion rates in Europe. Earth Sci Rev 94:23–38
Von Blanckenburg F, Hewawasam T, Kubik WP (2004) Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka. J Geophys Res 109:F03008
von Blanckenburg F (2005) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 237(3–4):462–479
Wickramagamage P (1998) Large-scale deforestation for plantation agriculture in the hill country of Sri Lanka and its impact. Hydrol Process 12(13–14):2015–2028
Wijesekera S, Samarakoon L (2001) Extraction of parameters and modelling soil erosion using GIS in a grid environment. In The 22nd Asian Conference on Remote Sensing. CRISP, National University of Singapore; SISV and AARS, Singapore
Wijesundara NC, Abeysingha NS, Dissanayake DMSLB (2018) GIS-based soil loss estimation using RUSLE model: a case of Kirindi Oya river basin, Sri Lanka. Model Earth Syst Environ 4:251
Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. John Wiley and Sons, New York, p 520
Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning (Vo. 537). Department of Agriculture Science and Education Administration, Washington
Zakerinejad R, Maerker M (2015) An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Nat Hazards 79:25–50