Thay đổi biểu hiện gen cấp tính ở tế bào murine RAW 264.7 sau khi nhiễm virus giả dại

Archives of Virology - Tập 167 - Trang 2623-2631 - 2022
Chao Tong1,2, Peng-Fei Fu1,3,4, Sheng-Li Ming1,3,4, Lei Zeng1,3,4, He-Shui Zhu1,3,4, Jiang Wang1,3,4
1College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
2Wuhu Overseas Student Pioneer Park, Wuhu, China
3Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, China
4Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, China

Tóm tắt

Giải trình tự thế hệ tiếp theo cho phép đánh giá sự thay đổi biểu hiện gen do tương tác giữa virus và vật chủ ở cấp độ RNA. Virus giả dại (PRV) gây thiệt hại kinh tế đáng kể cho ngành chăn nuôi heo. Nghiên cứu gần đây đã chỉ ra rằng PRV có thể lây truyền và nhiễm vào con người. Để xác định các phản ứng sinh lý bệnh và bệnh lý sau khi nhiễm PRV, chúng tôi đã phân tích những thay đổi trong bản sao gien ở dòng tế bào murine RAW 264.7 trong 36 giờ. Tổng cộng, 156, 153 và 190 gen biểu hiện khác biệt đã được xác định tại 2 giờ, 12 giờ và 36 giờ, tương ứng. Bảy gen biểu hiện khác biệt (Trim27, Ccdc117, Mrps12, Ccl4, Cerkl, Ubald1 và Hmga1-rs1) đã có mặt trong tất cả các nhóm điều trị. Những phát hiện của chúng tôi mở rộng kiến thức về sự điều tiết gen và phản ứng miễn dịch xảy ra sau khi nhiễm PRV. Các gen biểu hiện khác biệt này có thể giúp cải thiện hiểu biết của chúng tôi về cơ chế bệnh sinh của PRV.

Từ khóa

#virus giả dại #biểu hiện gen #chết tế bào #miễn dịch #giải trình tự thế hệ tiếp theo

Tài liệu tham khảo

Verpoest S, Cay B, Favoreel H, De Regge N (2017) Age-Dependent Differences in Pseudorabies Virus Neuropathogenesis and Associated Cytokine Expression. J Virol 91. https://doi.org/10.1128/JVI.02058-16 Sehl J, Teifke JP (2020) Comparative Pathology of Pseudorabies in Different Naturally and Experimentally Infected Species-A Review. Pathogens 9. https://doi.org/10.3390/pathogens9080633 Milicevic V, Radojicic S, Valcic M, Ivovic V, Radosavljevic V (2016) Evidence of Aujeszky’s disease in wild boar in Serbia. BMC Vet Res 12:134. https://doi.org/10.1186/s12917-016-0758-9 Thawley DG, Wright JC (1982) Pseudorabies virus infection in raccoons: a review. J Wildl Dis 18:113–116. https://doi.org/10.7589/0090-3558-18.1.113 Banks M, Torraca LS, Greenwood AG, Taylor DC (1999) Aujeszky’s disease in captive bears. Vet Rec 145:362–365. https://doi.org/10.1136/vr.145.13.362 Glass CM, McLean RG, Katz JB, Maehr DS, Cropp CB, Kirk LJ, McKeirnan AJ, Evermann JF (1994) Isolation of pseudorabies (Aujeszky’s disease) virus from a Florida panther. J Wildl Dis 30:180–184. https://doi.org/10.7589/0090-3558-30.2.180 Wang GS, Du Y, Wu JQ, Tian FL, Yu XJ, Wang JB (2018) Vaccine resistant pseudorabies virus causes mink infection in China. BMC Vet Res 14:20. https://doi.org/10.1186/s12917-018-1334-2 Skinner GRB, Ahmad A, Davies JA (2001) The infrequency of transmission of herpesviruses between humans and animals; postulation of an unrecognised protective host mechanism. Comp Immunol Microbiol Infect Dis 24:255–269. https://doi.org/10.1016/S0147-9571(01)00014-5 Ai JW, Weng SS, Cheng Q, Cui P, Li YJ, Wu HL, Zhu YM, Xu B, Zhang WH (2018) Human Endophthalmitis Caused By Pseudorabies Virus Infection, China, 2017. Emerg Infect Dis 24:1087–1090. https://doi.org/10.3201/eid2406.171612 Guo Z, Chen XX, Zhang G (2021) Human PRV Infection in China: An Alarm to Accelerate Eradication of PRV in Domestic Pigs. Virol Sin 36:823–828. https://doi.org/10.1007/s12250-021-00347-1 Wang D, Tao X, Fei M, Chen J, Guo W, Li P, Wang J (2020) Human encephalitis caused by pseudorabies virus infection: a case report. J Neurovirol 26:442–448. https://doi.org/10.1007/s13365-019-00822-2 Yang H, Han H, Wang H, Cui Y, Liu H, Ding S (2019) A Case of Human Viral Encephalitis Caused by Pseudorabies Virus Infection in China. Front Neurol 10:534. https://doi.org/10.3389/fneur.2019.00534 Yang X, Guan H, Li C, Li Y, Wang S, Zhao X, Zhao Y, Liu Y (2019) Characteristics of human encephalitis caused by pseudorabies virus: A case series study. Int J Infect Dis 87:92–99. https://doi.org/10.1016/j.ijid.2019.08.007 Liu Q, Wang X, Xie C, Ding S, Yang H, Guo S, Li J, Qin L, Ban F, Wang D, Wang C, Feng L, Ma H, Wu B, Zhang L, Dong C, Xing L, Zhang J, Chen H, Yan R, Wang X, Li W (2020) A novel human acute encephalitis caused by pseudorabies virus variant strain. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa987 Ren Y, Khan FA, Pandupuspitasari NS, Zhang S (2017) Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission. Curr Issues Mol Biol 21:21–40. https://doi.org/10.21775/cimb.021.021 Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J (2018) Monocytes and Macrophages as Viral Targets and Reservoirs. Int J Mol Sci 19. https://doi.org/10.3390/ijms19092821 Iglesias G, Pijoan C, Molitor T (1989) Interactions of pseudorabies virus with swine alveolar macrophages: effects of virus infection on cell functions. J Leukoc biol 45:410. https://doi.org/10.1002/hon.2900070307 Lin HW, Chang TJ, Yang DJ, Chen YC, Wang ML, Chang YY (2012) Regulation of virus-induced inflammatory response by beta-carotene in RAW264.7 cells. Food Chem 134:2169–2175. https://doi.org/10.1016/j.foodchem.2012.04.024 Flori L, Rogel-Gaillard C, Cochet M, Lemonnier G, Hugot K, Chardon P, Robin S, Lefevre F (2008) Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection. BMC Genomics 9. https://doi.org/10.1186/1471-2164-9-123 Wang J, Lu SF, Wan B, Ming SL, Li GL, Su BQ, Liu JY, Wei YS, Yang GY, Chu BB (2018) Maintenance of cyclic GMP-AMP homeostasis by ENPP1 is involved in pseudorabies virus infection. Mol Immunol 95:56–63. https://doi.org/10.1016/j.molimm.2018.01.008 Wang J, Wang CF, Ming SL, Li GL, Zeng L, Wang MD, Su BQ, Wang Q, Yang GY, Chu BB (2020) Porcine IFITM1 is a host restriction factor that inhibits pseudorabies virus infection. Int J Biol Macromol 151:1181–1193. https://doi.org/10.1016/j.ijbiomac.2019.10.162 Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat protoc. 11:1650–1667. https://doi.org/10.1038/nprot.2016.095 Mogensen TH, Paludan SR (2001) Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 65:131–150. https://doi.org/10.1128/MMBR.65.1.131-150.2001 Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG (2001) B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2:1126–1132. https://doi.org/10.1038/ni735 Al-Afif A, Alyazidi R, Oldford SA, Huang YY, King CA, Marr N, Haidl ID, Anderson R, Marshall JS (2015) Respiratory syncytial virus infection of primary human mast cells induces the selective production of type I interferons, CXCL10, and CCL4. J Allergy Clin Immun 136:1346. https://doi.org/10.1016/j.jaci.2015.01.042 Ramirez-Martinez G, Cruz-Lagunas A, Jimenez-Alvarez L, Espinosa E, Ortiz-Quintero B, Santos-Mendoza T, Herrera MT, Canche-Pool E, Mendoza C, Banales JL, Garcia-Moreno SA, Moran J, Cabello C, Orozco L, Aguilar-Delfin I, Hidalgo-Miranda A, Romero S, Suratt BT, Selman M, Zuniga J (2013) Seasonal and pandemic influenza H1N1 viruses induce differential expression of SOCS-1 and RIG-I genes and cytokine/chemokine production in macrophages. Cytokine 62, 151–159. https://doi.org/0.1016/j.cyto.2013.01.018 Kramer T, Enquist LW (2012) Alphaherpesvirus Infection Disrupts Mitochondrial Transport in Neurons. Cell Host Microbe 11:504–514. https://doi.org/10.1016/j.chom.2012.03.005 Huang T, Xu ZP, Chen L, Cai YD, Kong XY (2011) Computational Analysis of HIV-1 Resistance Based on Gene Expression Profiles and the Virus-Host Interaction Network. https://doi.org/10.1371/journal.pone.0017291. Plos One 6 Curty G, Beckerle GA, Iniguez LP, Furler RL, de Carvalho PS, Marston JL, Champiat S, Heymann JJ, Ormsby CE, Reyes-Teran G, Soares MA, Nixon DF, Bendall ML, Leal FE, Rougvie MD (2020) Human Endogenous Retrovirus Expression Is Upregulated in the Breast Cancer Microenvironment of HIV Infected Women: A Pilot Study. Front Oncol 10. https://doi.org/10.3389/fonc.2020.553983