Acute administration of levetiracetam in tonic pain model modulates gene expression of 5HT1A and 5HT7 receptors in the thalamus of rats (Rattus norvergicus)
Tóm tắt
The nociceptive effect of Levetiracetam (LEV) on the expression of 5-HT1A and 5-HT7 receptors found in the thalamus was evaluated. Thirty-six male rats (Wistar) were randomized into six groups: in the Control group without treatment; LEV50 group LEV was administered in a single dose of 50 mg/kg i.g.; in the LEV300 group LEV dose of 300 mg/kg i.g.; in the FORMALIN group the formalin test was performed; in the LEV50/FORMALIN group LEV dose of 50 mg/kg i.g and the formalin test was performed; in the LEV300/FORMALIN group LEV dose of 300 mg/kg i.g and the formalin test was performed, subsequently the thalamus was dissected in all groups. In the formalin tests LEV exhibited an antinociceptive effect in the LEV300/FORMALIN group (p < 0.05) and a pronociceptive effect in the LEV50/FORMALIN group (p < 0.001). The results obtained by Real-time PCR confirmed the expression of the 5-HT1A and 5-HT7 receptors in the thalamus, 5-HT1A receptors increased significantly in the FORMALIN group and the LEV300/FORMALIN group (p < 0.05). 5-HT7 receptors are only over expressed at a dose of 300 mg/Kg of LEV with formalin (p < 0.05). This suggests that LEV modulates the sensation of pain by controlling the expression of 5-HT1A and 5-HT7 in a tonic pain model, and that changes in the expression of 5-HT1A and 5-HT7 receptors are associated with the sensation of pain, furthermore its possibility to be used in clinical treatments for pain.
Tài liệu tham khảo
Loeser JD, Treede RD (2008) The Kyoto protocol of IASP basic pain terminology. Pain 137(3):473–477. https://doi.org/10.1016/j.pain.2008.04.025
Covarrubias-Gómez A, Guevara-López U, Gutiérrez-Salmerón C, Betancourt-Sandoval JA, Córdova-Domínguez JA (2010) Epidemiología del dolor crónico en México. Revista mexicana de anestesiología 33(4):207–213
Milton J (2013) Caring for patients with chronic pain: pearls and pitfalls. The Journal 113(8):620. https://doi.org/10.7556/jaoa.2013.023
Cortes-Altamirano JL, Olmos-Hernández A, Bonilla-Jaime H, Bandala C, González-Maciel A, Alfaro-Rodríguez A (2016) Levetiracetam as an antiepileptic, neuroprotective, and hyperalgesic drug. Neurol India 64(6):1266. https://doi.org/10.4103/0028-3886.193801
Cortes-Altamirano JL, Reyes-Long S, Hernandez AO, Bonilla-Jaime H, Mora PC, Bandala C, Alfaro-Rodriguez A (2018) Antinociceptive and pronociceptive effect of levetiracetam in tonic pain model. Pharmacol Rep 70(2):385–389. https://doi.org/10.1016/j.pharep.2017.09.007
Cortes-Altamirano JL, Olmos-Hernandez A, Jaime HB, Carrillo-Mora P, Bandala C, Reyes-Long S, Alfaro-Rodríguez A (2018) 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors and their role in the modulation of pain response in the central nervous system. Curr Neuropharmacol 16(2):210–221. https://doi.org/10.2174/1570159X15666170911121027
Perena M, Perena M, Rodrigo-Royo M, Romera E (2007) Neuroanatomía del dolor. Rev Soc Esp Dolor 7(2):5–10
Norma Oficial Mexicana (1999) Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. NOM-062-ZOO-1999
Dubuisson D, Dennis SG (1997) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4:161–174. https://doi.org/10.1016/0304-3959(77)90130-0
Wheeler-Aceto H, Cowan A (1991) Standardization of the rat paw formalin test for the evaluation of analgesics. Int Clin Psychopharmacol 104(1):35–44. https://doi.org/10.1007/BF02244551
Micov A, Tomić M, Popović B, Stepanović-Petrović R (2010) The antihyperalgesic effect of levetiracetam in an inflammatory model of pain in rats: mechanism of action. Br J Pharmacol 161(2):384–392. https://doi.org/10.1111/j.1476-5381.2010.00877.x
Tomic MA, Pecikoza UB, Micov AM, Popovic BV, Stepanovic-Petrovic RM (2015) The effects of levetiracetam, sumatriptan, and caffeine in a rat model of trigeminal pain: interactions in 2-component combinations. Anesth Analg 120(6):1385–1393. https://doi.org/10.1213/ANE.0000000000000640
Munro G, Erichsen HK, Mirza NR (2007) Pharmacological comparison of anticonvulsant drugs in animal models of persistent pain and anxiety. Neuropharmacology 53(5):609–618. https://doi.org/10.1016/j.neuropharm.2007.07.002
Kia HK, Brisorgueil MJ, Hamon M, Calas A, Vergé D (1996) Ultrastructural localization of 5-hydroxytryptamine1A receptors in the rat brain. J Neurosci Res 46(6):697–708. https://doi.org/10.1002/(SICI)1097-4547(19961215)46:6%3c697:AID-JNR7%3e3.0.CO;2-A
Neumaier J, Sexton T, Yracheta J, Diaz A, Brownfield M (2001) Localization of 5-HT7 receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J Chem Neuroanat 21(1):63–73. https://doi.org/10.1016/S0891-0618(00)00092-2
Zemlan FP, Schwab EF (1991) Characterization of a novel serotonin receptor subtype (5-HTls) in rat CNS: interaction with a GTP binding protein. J Neurochem 57:2092–2099. https://doi.org/10.1111/j.1471-4159.1991.tb06427.x
Sagalajev B, Bourbia N, Beloushko E, Wei H, Pertovaara A (2015) Bidirectional amygdaloid control of neuropathic hypersensitivity mediated by descending serotonergic pathways acting on spinal 5-HT3 and 5-HT1A receptors. Behav Brain Res 282:14–24. https://doi.org/10.1016/j.bbr.2014.12.052
Zhang YQ, Gao X, Ji GC, Wu GC (2001) Expression of 5-HT2A receptor mRNA in rat spinal dorsal horn and some nuclei of brainstem after peripheral inflammation. Brain Res 900(1):146–151. https://doi.org/10.1016/S0006-8993(01)02283-1
Sasaki M, Ishizaki K, Obata H, Goto F (2001) Effects of 5-HT2 and 5-HT3 receptors on the modulation of nociceptive transmission in rat spinal cord according to the formalin test. Eur J Pharmacol 424:45–52. https://doi.org/10.1016/S0014-2999(01)01117-7
Wang W, Wu SX, Wang YY, Liu XY, Li YQ (2003) 5-Hydroxytryptamine1A receptor is involved in the bee venom induced inflammatory pain. Pain 106(1–2):135–142. https://doi.org/10.1016/S0304-3959(03)00315-4
Tian B, Wang XL, Huang Y, Chen LH, Cheng RX, Zhou FM, Liu T (2016) Peripheral and spinal 5-HT receptors participate in cholestatic itch and antinociception induced by bile duct ligation in rats. Sci Rep 6(1):1–17. https://doi.org/10.1038/srep36286
Jiang WX, Zhang LC (2008) Distribution and effects of 5-HT (1A) receptors in distal cerebral spinal fluid-contacting neurons in rat brain parenchyma in neuropathic pain. Sheng li xue bao [Acta physiologica Sinica] 60(2):243–248
Ayaz G, Halici Z, Albayrak A, Karakus E, Cadirci E (2017) Evaluation of 5-HT7 receptor trafficking on in Vivo and in vitro model of lipopolysaccharide (LPS)-induced inflammatory cell injury in rats and LPS-treated A549 cells. Biochem Genet 55(1):34–47. https://doi.org/10.1007/s10528-016-9769-2
Irge E, Halici Z, Yilmaz M, Cadirci E, Karakus E (2016) Evaluation of 5-HT7 receptor expression in the placentae of normal and pre-eclamptic women. Clin Exp Hypertens 38(2):189–193. https://doi.org/10.3109/10641963.2015.1081215
Cho SY, Ki HG, Kim JM, Oh JM, Yang JH, Kim WM, Lee HG, Yoon MH, Choi JI (2015) Expression of the spinal 5-HT7 receptor and p-ERK pathway in the carrageenan inflammatory pain of rats. Korean J Anesthesiol 68(2):170. https://doi.org/10.4097/kjae.2015.68.2.170
Eide PK, Joly NM, Hole K (1990) The role of spinal cord 5-HT1A and 5-HT1B receptors in the modulation of a spinal nociceptive reflex. Brain Res Rev 536(1–2):195–200. https://doi.org/10.1016/0006-8993(90)90025-7
Brenchat A, Zamanillo D, Hamon M, Romero L, Vela JM (2012) Role of peripheral versus spinal 5-HT7 receptors in the modulation of pain under sensitizing conditions. Eur J Pain 16(1):72–81. https://doi.org/10.1016/j.ejpain.2011.07.004
Rocha-González HI, Meneses A, Carlton SM, Granados-Soto V (2005) Pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test. Pain 117(1–2):182–192. https://doi.org/10.1016/j.pain.2005.06.011
Harte SE, Kender RG, Borszcz GS (2005) Activation of 5-HT1A and 5-HT7 receptors in the parafascicular nucleus suppresses the affective reaction of rats to noxious stimulation. Pain 113(3):405–415. https://doi.org/10.1016/j.pain.2004.11.023
Kondaurova EM, Bazovkina DV, Naumenko VS (2017) 5-HT 1A/5-HT 7 receptor interplay: Chronic activation of 5-HT 7 receptors decreases the functional activity of 5-HT 1A receptor and its content in the mouse brain. Mol Biol 51(1):136–142. https://doi.org/10.1134/S0026893316060108
Popova NK, Naumenko VS (2013) 5-HT1A receptor as a key player in the brain 5-HT system. Rev Neurosci 24(2):191–204. https://doi.org/10.1515/revneuro-2012-0082
Kato S, Matsuda N, Matsumoto K, Wada M, Onimaru N, Yasuda M, Amagase K, Horie S, Takeuchi K (2012) Dual role of serotonin in the pathogenesis of indomethacin-induced small intestinal ulceration: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors. Pharmacol Res 66(3):226–234. https://doi.org/10.1016/j.phrs.2012.06.002
Johnson O, Becnel J, Nichols CD (2009) Serotonin 5-HT2 and 5-HT1A-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience 158(4):1292–1300. https://doi.org/10.1016/j.neuroscience.2008.10.055
Asante CO, Dickenson AH (2010) Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat. Neurosci Lett 484(2):108–112. https://doi.org/10.1016/j.neulet.2010.08.024
Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254(5030):432–437. https://doi.org/10.1126/science.1718042
Brüss M, Barann M, Hayer-Zillgen M, Eucker T, Göthert M, Bönisch H (2000) Modified 5-HT 3A receptor function by co-expression of alternatively spliced human 5-HT 3A receptor isoforms. Naunyn-Schmiedeberg's Arch Pharmacol 362(4–5):392–401. https://doi.org/10.1007/s002100000342