Tác Động Cấp Tính Của Valproate Gây Ra Những Thay Đổi Cụ Thể Theo Giới Tính Trong Chuyển Hóa Hormone Steroid Tại Vỏ Não Của Chuột Vị Thành Niên

Neurochemical Research - Tập 45 - Trang 2044-2051 - 2020
Sung-Hee Cho1, Jung Hoon Chai2, Sung-Youn Chang3, Soon Ae Kim2
1Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
2Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
3Innovative Therapeutics Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea

Tóm tắt

Acid valproic (VPA), một loại thuốc chống động kinh và ổn định tâm trạng, điều chỉnh quá trình dẫn truyền thần kinh và biểu hiện gen thông qua việc ức chế hoạt động của histone deacetylase. Có báo cáo cho rằng VPA có thể ảnh hưởng đến mức hormone steroid. Trong nghiên cứu này, các thay đổi chuyển hóa cấp tính do VPA gây ra được khảo sát bằng phương pháp sắc ký lỏng - khối phổ kết hợp trong não của chuột trước tuổi dậy thì. Ở chuột được điều trị VPA (400 mg/kg trong dung dịch saline, đường tiêm phúc mạc), mức cortisol đã tăng lên (giới nữ: P < 0.004, giới nam: P < 0.003) và mức 17β-estradiol đã giảm (Cả hai P < 0.03). Hơn nữa, ở chuột đực được điều trị VPA, mức dihydrotestosterone đã tăng (P < 0.02) trong khi mức testosterone đã giảm (P < 0.002). Hoạt động của 4-hydroxylase đã được tăng cường ở chuột cái được điều trị VPA (P < 0.01) và hoạt động của 5α-reductase đã tăng ở chuột đực được điều trị VPA (P < 0.003). Những kết quả này cho thấy sự khác biệt cụ thể theo giới tính trong chuyển hóa steroid do VPA gây ra ở vỏ não.

Từ khóa

#acid valproic #hormone steroid #chuyển hóa #chuột vị thành niên #vỏ não

Tài liệu tham khảo

Godin Y, Heiner L, Mark J, Mandel P (1969) Effects of DI-n‐propylacetate, an anticonvulsive compound, on GABA metabolism. J Neurochem 16:869–873. https://doi.org/10.1111/j.1471-4159.1969.tb08975.x Löscher W (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 18:485–502. https://doi.org/10.1007/bf00967253 Luder AS, Parks JK, Frerman F, Parker WD (1990) Inactivation of beef brain alpha-ketoglutarate dehydrogenase complex by valproic acid and valproic acid metabolites. Possible mechanism of anticonvulsant and toxic actions. J Clin Invest 86:1574–1581. https://doi.org/10.1172/JCI114877 McCormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027. https://doi.org/10.1152/jn.1989.62.5.1018 Stratton MS, Searcy BT, Tobet SA (2011) GABA regulates corticotropin releasing hormone levels in the paraventricular nucleus of the hypothalamus in newborn mice. Physiol Behav 104:327. https://doi.org/10.1016/J.PHYSBEH.2011.01.003 Tran V, Hatalski CG, Yan XX, Baram TZ (1999) Effects of blocking GABA degradation on corticotropin-releasing hormone gene expression in selected brain regions. Epilepsia 40:1190–1197 Miller L, Foradori CD, Lalmansingh AS et al (2011) Histone deacetylase 1 (HDAC1) participates in the down-regulation of corticotropin releasing hormone gene (crh) expression. Physiol Behav 104:312–320. https://doi.org/10.1016/J.PHYSBEH.2011.03.026 Zhang L, Li H, Li S, Zou X (2016) Reproductive and metabolic abnormalities in women taking valproate for bipolar disorder: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 202:26–31. https://doi.org/10.1016/j.ejogrb.2016.04.038 Xiaotian X, Hengzhong Z, Yao X et al (2013) Effects of antiepileptic drugs on reproductive endocrine function, sexual function and sperm parameters in Chinese Han men with epilepsy. J Clin Neurosci 20:1492–1497. https://doi.org/10.1016/j.jocn.2012.11.028 Glister C, Satchell L, Michael AE et al (2012) The anti-epileptic drug valproic acid (VPA) inhibits steroidogenesis in bovine theca and granulosa cells in vitro. PLoS One 7:e49553. https://doi.org/10.1371/journal.pone.0049553 Brion L, Gorostizaga A, Gómez NV et al (2011) Valproic acid alters mitochondrial cholesterol transport in Y1 adrenocortical cells. Toxicol Vitr 25:7–12. https://doi.org/10.1016/J.TIV.2010.08.006 Pesaresi M, Maschi O, Giatti S et al (2010) Sex differences in neuroactive steroid levels in the nervous system of diabetic and non-diabetic rats. Horm Behav 57:46–55. https://doi.org/10.1016/j.yhbeh.2009.04.008 Göttlicher M, Minucci S, Zhu P et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978. https://doi.org/10.1093/emboj/20.24.6969 Bilo L, Meo R (2008) Polycystic ovary syndrome in women using valproate: a review. Gynecol Endocrinol 24:562–570. https://doi.org/10.1080/09513590802288259 Pennell PB (2009) Hormonal aspects of epilepsy. Neurol Clin 27:941–965 Taubøll E, Sveberg L, Svalheim S (2015) Interactions between hormones and epilepsy. Seizure 28:3–11 Banks WA (2012) Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 153:4111–4119. https://doi.org/10.1210/en.2012-1435 Diotel N, Charlier TD, Lefebvre d’Hellencourt C et al (2018) Steroid transport, local synthesis, and signaling within the brain: roles in neurogenesis, neuroprotection, and sexual behaviors. Front Neurosci 12:84. https://doi.org/10.3389/fnins.2018.00084 Mellon SH, Vaudry H (2001) Biosynthesis of neurosteroids and regulation of their sysnthesis. Int Rev Neurobiol 46:33–78. https://doi.org/10.1016/S0074-7742(01)46058-2 Akwa Y, Morfin RF, Robel P, Baulieu EE (1992) Neurosteroid metabolism. 7 alpha-Hydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem J 288(Pt 3):959–964. https://doi.org/10.1042/BJ2880959 Baulieu EE (1991) Neurosteroids: a new function in the brain. Biol Cell 71:3–10 Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322 Taubøll E, Gregoraszczuk EL, Kołodziej A et al (2003) Valproate inhibits the conversion of testosterone to estradiol and acts as an apoptotic agent in growing porcine ovarian follicular cells. Epilepsia 44:1014–1021. https://doi.org/10.1046/j.1528-1157.2003.60702.x Taubøll E, Wójtowicz AK, Ropstad E, Gregoraszczuk EL (2002) Valproate irreversibly alters steroid secretion patterns from porcine follicular cells in vitro. Reprod Toxicol 16:319–325. https://doi.org/10.1016/S0890-6238(02)00020-5 Von Krogh K, Harjen H, Almås C et al (2010) The effect of valproate and levetiracetam on steroidogenesis in forskolin-stimulated H295R cells. Epilepsia 51:2280–2288. https://doi.org/10.1111/j.1528-1167.2010.02702.x Gregoraszczuk E, Wójtowicz AK, Taubøll E, Ropstad E (2000) Valproate-induced alterations in testosterone, estradiol and progesterone secretion from porcine follicular cells isolated from small- and medium-sized ovarian follicles. Seizure 9:480–485. https://doi.org/10.1053/SEIZ.2000.0443 Inada H, Chihara K, Yamashita A et al (2012) Evaluation of ovarian toxicity of sodium valproate (VPA) using cultured rat ovarian follicles. J Toxicol Sci 37:587–594. https://doi.org/10.2131/jts.37.587 Sukhorum W, Iamsaard S (2017) Changes in testicular function proteins and sperm acrosome status in rats treated with valproic acid. Reprod Fertil Dev 29:1585. https://doi.org/10.1071/RD16205 Tringali G, Aubry JM, Moscianese K et al (2004) Valproic acid inhibits corticotropin-releasing factor synthesis and release from the rat hypothalamus in vitro: evidence for the involvement of GABAergic neurotransmission. J Psychiatry Neurosci 29:459–466 Stout S, Owens MJ, Lindsey KP et al (2001) Effects of sodium valproate on corticotropin-releasing factor systems in rat brain. Neuropsychopharmacology 24:624–631. https://doi.org/10.1016/S0893-133X(00)00243-8 Gilmor ML, Skelton KH, Nemeroff CB, Owens MJ (2003) The effects of chronic treatment with the mood stabilizers valproic acid and lithium on corticotropin-releasing factor neuronal systems. J Pharmacol Exp Ther 305:434–439. https://doi.org/10.1124/jpet.102.045419 Hsing AW, Stanczyk FZ, Bélanger A et al (2007) Reproducibility of serum sex steroid assays in men by RIA and mass spectrometry. Cancer Epidemiol Biomarkers Prev 16:1004–1008. https://doi.org/10.1158/1055-9965.EPI-06-0792 Wood L, Ducroq DH, Fraser HL et al (2008) Measurement of urinary free cortisol by tandem mass spectrometry and comparison with results obtained by gas chromatography-mass spectrometry and two commercial immunoassays. Ann Clin Biochem 45:380–388. https://doi.org/10.1258/acb.2007.007119 Dubey RK, Jackson EK (2001) Invited review: cardiovascular protective effects of 17β-estradiol metabolites. J Appl Physiol 91:1868–1883. https://doi.org/10.1152/jappl.2001.91.4.1868 Weaver ICG, Meaney MJ, Szyf M (2006) Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci 103:3480–3485. https://doi.org/10.1073/pnas.0507526103 Murray EK, Hien A, de Vries GJ, Forger NG (2009) Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology 150:4241–4247. https://doi.org/10.1210/en.2009-0458 Tsai H-W, Grant PA, Rissman EF (2009) Sex differences in histone modifications in the neonatal mouse brain. Epigenetics 4:47–53 Bell MR (2018) Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans. Endocrinology 159:2596–2613. https://doi.org/10.1210/en.2018-00220