Actuated plasmonic nanohole arrays for sensing and optical spectroscopy applications

Nanoscale - Tập 12 Số 17 - Trang 9756-9768
Daria Kotlarek1,2,3,4, Stefan Fossati1,2,3,4, Priyamvada Venugopalan1,2,3,4,5, Nestor Gisbert Quilis1,2,3,4, Jiří Slabý6,7,8, Jiřı́ Homola6,7,8, Médéric Lequeux9,10,11,12, Frédéric Amiard13,14,15, Marc Lamy de la Chapelle13,14,15, Ulrich Jonas16,17,18,19,20, Jakub Dostálek1,2,3,4
13430 Tulln an der Donau
2AIT-Austrian Institute of Technology GmbH
3Austria
4Biosensor Technologies
5CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie GmbH
6Czech Republic
7Institute of Photonics and Electronics of the Czech Academy of Sciences
8Praha 8
9(UMR 7244)
10Laboratoire CSPBAT
11Sorbonne Paris Cité
12Université Paris 13,
1372085 Le Mans cedex 9
14France
15Institut des Molécules et Matériaux du Mans (IMMM – UMR CNRS 6283)
16Department Chemistry-Biology
17Germany
18Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf Reichwein-Strasse 2, Siegen 57076, Germany
19Siegen 57076
20University of Siegen

Tóm tắt

We report a new approach to rapidly actuate the plasmonic characteristics of thin gold films perforated with nanohole arrays by thermo-responsive hydrogel and demonstrate its utilization to sensing with flow-through format and SPR/SERS readout.

Từ khóa


Tài liệu tham khảo

Ebbesen, 1998, Nature, 391, 667, 10.1038/35570

Najiminaini, 2013, Sci. Rep., 3, 1, 10.1038/srep02589

Ahn, 2018, Nanoscale, 10, 6313, 10.1039/C8NR01006D

Brolo, 2005, J. Am. Chem. Soc., 127, 14936, 10.1021/ja0548687

Zhang, 2017, Int. J. Nanomed., 12, 2307, 10.2147/IJN.S128172

Brolo, 2004, Nano Lett., 4, 2015, 10.1021/nl048818w

Zheng, 2015, Phys. Chem. Chem. Phys., 17, 21211, 10.1039/C4CP05291A

Kumar, 2014, Chem. Mater., 26, 6523, 10.1021/cm5031848

Wu, 2018, Appl. Surf. Sci., 435, 1143, 10.1016/j.apsusc.2017.11.213

Sahu, 2019, Nano Lett., 19, 6192, 10.1021/acs.nanolett.9b02239

Stewart, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 17143, 10.1073/pnas.0606216103

Yanik, 2011, Proc. Natl. Acad. Sci. U. S. A., 108, 11784, 10.1073/pnas.1101910108

Nakamoto, 2011, Nanoscale, 3, 5067, 10.1039/c1nr10883b

Li, 2017, Lab Chip, 17, 2208, 10.1039/C7LC00277G

Im, 2014, Nat. Biotechnol., 32, 490, 10.1038/nbt.2886

Yanik, 2010, Nano Lett., 10, 4962, 10.1021/nl103025u

Jackman, 2016, Small, 12, 1159, 10.1002/smll.201501914

Gomez-Cruz, 2018, Biosens. Bioelectron., 106, 105, 10.1016/j.bios.2018.01.055

Tu, 2017, Sci. Rep., 7, 11020, 10.1038/s41598-017-11383-x

Lim, 2017, Nanoscale, 9, 17224, 10.1039/C7NR04961G

Kumar, 2015, Anal. Chem., 87, 1973

Jonsson, 2007, Nano Lett., 7, 3462, 10.1021/nl072006t

Plucinski, 2016, Biosens. Bioelectron., 75, 337, 10.1016/j.bios.2015.07.041

Liu, 2002, Phys. Rev. B: Condens. Matter Mater. Phys., 65, 155423, 10.1103/PhysRevB.65.155423

Garcia-Vidal, 2010, Rev. Mod. Phys., 82, 729, 10.1103/RevModPhys.82.729

Horak, 2019, Sci. Rep., 9, 4004, 10.1038/s41598-019-40500-1

Wang, 2012, Plasmonics, 7, 659, 10.1007/s11468-012-9356-2

Stelling, 2018, Adv. Mater. Interfaces, 5, 1

Mohammadi, 2020, J. Phys. Chem. C, 124, 2609, 10.1021/acs.jpcc.9b10229

Hentschel, 2013, Nano Lett., 13, 4428, 10.1021/nl402269h

Kravets, 2018, Chem. Rev., 118, 5912, 10.1021/acs.chemrev.8b00243

Masson, 2010, Analyst, 135, 1483, 10.1039/c0an00053a

Escobedo, 2013, Lab Chip, 13, 2445, 10.1039/c3lc50107h

Im, 2011, ACS Nano, 5, 6244, 10.1021/nn202013v

Lee, 2009, Langmuir, 25, 13685, 10.1021/la9020614

Ai, 2014, Adv. Colloid Interface Sci., 206, 5, 10.1016/j.cis.2013.11.010

Junesch, 2012, ACS Nano, 6, 10405, 10.1021/nn304662e

Im, 2012, Anal. Chem., 84, 1941, 10.1021/ac300070t

Barik, 2014, Nano Lett., 14, 2006, 10.1021/nl500149h

J. Dostálek and W.Knoll , Plasmonics , 2012 , vol. 2

Zhao, 2016, Anal. Chem., 88, 10940, 10.1021/acs.analchem.6b02521

Escobedo, 2010, Anal. Chem., 82, 10015, 10.1021/ac101654f

Sharma, 2016, Opt. Express, 24, 2457, 10.1364/OE.24.002457

Gisbert Quilis, 2019, Adv. Opt. Mater., 7, 1, 10.1002/adom.201900342

Sharma, 2016, J. Phys. Chem. C, 120, 561, 10.1021/acs.jpcc.5b10336

Aulasevich, 2009, Macromol. Rapid Commun., 30, 872, 10.1002/marc.200800747

Reiner, 2017, Analyst, 142, 3913, 10.1039/C7AN00469A

Fleger, 2009, Surf. Sci., 603, 788, 10.1016/j.susc.2009.01.020

Quilis, 2018, Nanoscale, 10, 10268, 10.1039/C7NR08905H

Lee, 2007, J. Phys. Chem. C, 111, 17985, 10.1021/jp077422g

Chirumamilla, 2014, Nanotechnology, 25, 235303, 10.1088/0957-4484/25/23/235303

Guillot, 2012, J. Quant. Spectrosc. Radiat. Transfer, 113, 2321, 10.1016/j.jqsrt.2012.04.025

Guillot, 2010, Appl. Phys. Lett., 97, 023113, 10.1063/1.3462068

Kessentini, 2014, J. Phys. Chem. C, 118, 3209, 10.1021/jp409844y

Colas, 2016, J. Phys. Chem. C, 120, 13675, 10.1021/acs.jpcc.6b01492

Beines, 2007, Langmuir, 23, 2231, 10.1021/la063264t

Sergelen, 2017, Biointerphases, 12, 051002, 10.1116/1.4996952

Toma, 2013, J. Phys. Chem. C, 117, 11705, 10.1021/jp400255u