Activity enhanced TiO2 nanomaterials for photodegradation of dyes - A review

Charitha Thambiliyagodage1
1School of Science and Education, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka

Tài liệu tham khảo

Abu Bakar, 2016, An insight toward the photocatalytic activity of S doped 1-D TiO2 nanorods prepared via novel route: As promising platform for environmental leap, J. Mol. Catal. A Chem., 412, 78, 10.1016/j.molcata.2015.12.002 Adhoum, 2004, Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation, J. Hazard. Mater., 112, 207, 10.1016/j.jhazmat.2004.04.018 Aguilar, 2013, A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap, Chem. Phys. Lett., 571, 49, 10.1016/j.cplett.2013.04.007 Ahmadi, 2017, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite, J. Environ. Manage., 186, 55, 10.1016/j.jenvman.2016.09.088 Ai, 2015, TiO2/Bi2S3 core-shell nanowire arrays for photoelectrochemical hydrogen generation, RSC Adv., 5, 13544, 10.1039/C4RA15820B Ali, 2018, Preparation and characterization of graphene – TiO2 nanocomposite for enhanced photodegradation of Rhodamine-B dye, Egypt. J. Aquat. Res., 44, 263, 10.1016/j.ejar.2018.11.009 AltIn, 2016, Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal, Mater. Sci. Semicond. Process., 45, 36, 10.1016/j.mssp.2016.01.016 Anil Kumar Reddy, 2010, Photocatalytic Degradation of Isoproturon Pesticide on C, N and S Doped TiO2, J. Water Resour. Prot., 02, 235, 10.4236/jwarp.2010.23027 Ansari, 2016, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem., 40, 3000, 10.1039/C5NJ03478G Bakar, 2016, Rapid and morphology controlled synthesis of anionic S-doped TiO2 photocatalysts for the visible-light-driven photodegradation of organic pollutants, RSC Adv., 6, 36516, 10.1039/C6RA03819K Banat, 1996, Microbial decolorization of textile-dye-containing effluents: A review, Bioresour. Technol., 58, 217, 10.1016/S0960-8524(96)00113-7 Banerjee, 2015, Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation, Nanoscale, 7, 10504, 10.1039/C5NR02097B Banerjee, 2018, Graphene oxide (rGO)-metal oxide (TiO 2 /Fe 3 O 4) based nanocomposites for the removal of methylene blue, Appl. Surf. Sci., 439, 560, 10.1016/j.apsusc.2018.01.085 Behpour, 2017, Considering photocatalytic activity of N/F/S-doped TiO2 thin films in degradation of textile waste under visible and sunlight irradiation, Sol. Energy, 158, 636, 10.1016/j.solener.2017.10.034 Ben Mansour, 2012, Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation, Environ. Sci. Pollut. Res., 19, 2634, 10.1007/s11356-012-0802-7 Bensouici, 2017, Optical, structural and photocatalysis properties of Cu-doped TiO 2 thin films, Appl. Surf. Sci., 395, 110, 10.1016/j.apsusc.2016.07.034 Bessegato, 2015, Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes, Catal. Today, 240, 100, 10.1016/j.cattod.2014.03.073 Bessekhouad, 2005, Photocatalytic activity of Cu2O/TiO2, Bi 2O3/TiO2 and ZnMn2O 4/TiO2 heterojunctions, Catal. Today, 101, 315, 10.1016/j.cattod.2005.03.038 Bessekhouad, 2004, Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, J. Photochem. Photobiol. A Chem., 163, 569, 10.1016/j.jphotochem.2004.02.006 Bhanvase, 2017, A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment, Environ. Technol. Rev., 6, 1, 10.1080/21622515.2016.1264489 Binas, 2017, Modified TiO2 based photocatalysts for improved air and health quality, J. Mater., 3, 3 Brindha, 2017, Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes, J. Photochem. Photobiol. A Chem., 340, 146, 10.1016/j.jphotochem.2017.03.010 Burda, 2003, Enhanced Nitrogen Doping in TiO2 Nanoparticles, Nano Lett., 3, 1049, 10.1021/nl034332o Butler, 2016, Effect of Fe-doped TiO2 photocatalysts on the degradation of acid orange 7. In: Integrated Ferroelectrics, Taylor and Francis Ltd., 168, 1 Carneiro, 2007, Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation, Dye. Pigm., 74, 127, 10.1016/j.dyepig.2006.01.022 Carvalho, 2010, Photocatalytic degradation of methylene blue by TiO2-Cu thin films: Theoretical and experimental study, J. Hazard. Mater., 184, 273, 10.1016/j.jhazmat.2010.08.033 Celik, 2006, Processing, characterization and photocatalytic properties of Cu doped TiO2 thin films on glass substrate by sol-gel technique. Mater, Sci. Eng. B Solid-State Mater. Adv. Technol., 132, 258, 10.1016/j.mseb.2006.03.038 Chanda, 2018, Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles, RSC Adv., 8, 10939, 10.1039/C8RA00626A Chauhan, 2012, Structural and photocatalytic studies of Mn doped TiO2 nanoparticles, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 98, 256, 10.1016/j.saa.2012.08.009 Chauhan, 2012, Structural and optical characterization of Ag-doped TiO 2 nanoparticles prepared by a sol-gel method, Res. Chem. Intermed., 38, 1443, 10.1007/s11164-011-0475-8 Chekin, 2013, Synthesis of Pt doped TiO2 nanoparticles: Characterization and application for electrocatalytic oxidation of l-methionine, Sensors Actuators, B Chem., 177, 898, 10.1016/j.snb.2012.12.002 Chen, 2007, Carbon and Nitrogen Co-doped TiO 2 with Enhanced Visible-Light Photocatalytic Activity, Ind. Eng. Chem. Res., 46, 2741, 10.1021/ie061491k Chen, 2011, Photocatalytic degradation of commercial methyl parathion in aqueous suspension containing La-doped TiO 2 nanoparticles, Environ. Technol., 32, 1515, 10.1080/09593330.2010.543927 Chu, 2011, Architecture of Cu2O@TiO2 core-shell heterojunction and photodegradation for 4-nitrophenol under simulated sunlight irradiation, Mater. Chem. Phys., 129, 1184, 10.1016/j.matchemphys.2011.06.004 Cinelli, 2017, Photocatalytic degradation of a model textile dye using Carbon-doped titanium dioxide and visible light, J. Water Process Eng., 20, 71, 10.1016/j.jwpe.2017.09.014 Cong, 2013, Anchoring a uniform TiO 2 layer on graphene oxide sheets as an efficient visible light photocatalyst, Appl. Surf. Sci., 282, 400, 10.1016/j.apsusc.2013.05.143 Daghrir, 2013, Modified TiO2 for environmental photocatalytic applications: A review, Ind. Eng. Chem. Res., 52, 3581, 10.1021/ie303468t Deng, 2011, Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity, Mater. Lett., 65, 2051, 10.1016/j.matlet.2011.04.010 Deng, Y., Zhao, R., 2015. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. https://doi.org/10.1007/s40726-015-0015-z. Deshmukh, 2020, Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight, Nano-Struct. Nano-Obj., 21, 100407, 10.1016/j.nanoso.2019.100407 Di Valentin, 2013, Trends in non-metal doping of anatase TiO2: B, C, N and F, Catal. Today, 206, 12, 10.1016/j.cattod.2011.11.030 Dimitrakopoulou, 2012, Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis, J. Environ. Manage., 98, 168, 10.1016/j.jenvman.2012.01.010 Dong, 2011, Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO 2 Nanomaterials Prepared by a Green Synthetic Approach, J. Phys. Chem. C, 115, 13285, 10.1021/jp111916q dos Santos, 2007, Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology, Bioresour. Technol., 98, 2369, 10.1016/j.biortech.2006.11.013 Dozzi, 2013, Fluorine-Doped TiO 2 Materials: Photocatalytic Activity vs Time-Resolved Photoluminescence, J. Phys. Chem. C, 117, 25586, 10.1021/jp4095563 Eadi, 2017, Novel Preparation of Fe Doped TiO2 Nanoparticles and Their Application for Gas Sensor and Photocatalytic Degradation, Adv. Mater. Sci. Eng., 2017, 1, 10.1155/2017/2191659 Elmolla, 2010, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 252, 46, 10.1016/j.desal.2009.11.003 Evgenidou, 2007, Heterogeneous photocatalytic degradation of prometryn in aqueous solutions under UV-Vis irradiation, Chemosphere, 68, 1877, 10.1016/j.chemosphere.2007.03.012 Fukahori, 2015, Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using TiO2, J. Environ. Manage., 157, 103, 10.1016/j.jenvman.2015.04.002 Ganesh, 2012, Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications, Sci. World J., 2012, 10.1100/2012/127326 Ghorai, 2008, Photooxidation of different organic dyes (RB, MO, TB, and BG) using Fe(III)-doped TiO 2 nanophotocatalyst prepared by novel chemical method, Appl. Surf. Sci., 254, 7498, 10.1016/j.apsusc.2008.06.042 Gita, 2019, Toxic Effects of Selected Textile Dyes on Elemental Composition, Photosynthetic Pigments, Protein Content and Growth of a Freshwater Chlorophycean Alga Chlorella vulgaris, Bull. Environ. Contam. Toxicol., 102, 795, 10.1007/s00128-019-02599-w Grabowska, 2009, Boron-doped TiO2: Characteristics and photoactivity under visible light, Procedia Chem., 1, 1553, 10.1016/j.proche.2009.11.003 Gültekin, 2014, Synthesis and characterisations of Au-nanoparticle-doped TiO2 and CdO thin films, J. Phys. Chem. Solids, 75, 775, 10.1016/j.jpcs.2014.01.011 Gupta, 2016, Improved performance of Ag-doped TiO2 synthesized by modified sol–gel method as photoanode of dye-sensitized solar cell, Appl. Phys. A Mater. Sci. Process., 122, 10.1007/s00339-016-0241-2 Gupta, 2011, A review of TiO2 nanoparticles, Chin. Sci. Bull., 56, 1639, 10.1007/s11434-011-4476-1 Hai, 2007, Hybrid treatment systems for dye wastewater, Crit. Rev. Environ. Sci. Technol., 37, 315, 10.1080/10643380601174723 Hajjaji, 2014, Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films, Nanoscale Res. Lett., 9, 1, 10.1186/1556-276X-9-543 Haldorai, 2014, Fabrication of nano TiO2@graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants, Synth. Met., 198, 10, 10.1016/j.synthmet.2014.09.034 Hanaor, 2011, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46, 855, 10.1007/s10853-010-5113-0 Hattori, 2001, High photocatalytic activity of F-doped TiO2 film on glass, J. Sol-Gel Sci. Technol., 22, 47, 10.1023/A:1011260219229 Houas, 2001, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B Environ., 31, 145, 10.1016/S0926-3373(00)00276-9 Hua, 2020, Recent Advances in Synthesis and Applications of Carbon-Doped TiO2 Nanomaterials, Catalysis, 10, 1431 Huang, 2016 Huang, 2009, Preparation and characterization of Cu2O/TiO2 nano-nano heterostructure photocatalysts, Catal. Commun., 10, 1839, 10.1016/j.catcom.2009.06.011 Irie, 2003, Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst, Chem. Lett., 32, 772, 10.1246/cl.2003.772 Jaiswal, 2015, Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity, Appl. Catal. B Environ., 168–169, 333, 10.1016/j.apcatb.2014.12.053 Janczarek, 2017, On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems, Catalysis, 7, 317 Jia, 2016, Characterization and mechanism analysis of graphite/C-doped TiO2 composite for enhanced photocatalytic performance, J. Ind. Eng. Chem., 33, 162, 10.1016/j.jiec.2015.09.030 Kale, 2020, Sonochemical preparation of multifunctional rGO-ZnS-TiO2 ternary nanocomposite and its application for CV dye removal, Optik. (Stuttg.), 208, 164532, 10.1016/j.ijleo.2020.164532 Kartal, 2012, Decolourization of C.I. Reactive Orange 16 via photocatalysis involving TiO2/UV and TiO2/UV/oxidant systems, Desalin. Water Treat., 48, 199, 10.1080/19443994.2012.698813 Kaur, 2018, Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination, J. Photochem. Photobiol. A Chem., 360, 34, 10.1016/j.jphotochem.2018.04.021 Kerkez-Kuyumcu, 2015, A comparative study for removal of different dyes over M/TiO2(M = Cu, Ni Co, Fe, Mn and Cr) photocatalysts under visible light irradiation, J. Photochem. Photobiol. A Chem., 311, 176, 10.1016/j.jphotochem.2015.05.037 Khan, 2018, Synthesis, characterization and application of Co doped TiO2 multilayer thin films, Results Phys., 9, 359, 10.1016/j.rinp.2018.02.068 Kim, 2005, Visible Light Active Platinum-Ion-Doped TiO 2 Photocatalyst, J. Phys. Chem. B, 109, 24260, 10.1021/jp055278y Kim, T.H., Rodríguez-González, V., Gyawali, G., Cho, S.H., Sekino, T., Lee, S.W., 2013. Synthesis of solar light responsive Fe, N co-doped TiO2 photocatalyst by sonochemical method, in: Catalysis Today. Elsevier, pp. 75–80. https://doi.org/10.1016/j.cattod.2012.09.014. Konstantinou, 2001, Photocatalytic degradation of selected s-triazine herbicides and oganophosphorus insecticides over aqueous TiO2 suspensions, Environ. Sci. Technol., 35, 398, 10.1021/es001271c Konstantinou, 2002, Photocatalytic degradation of propachlor in aqueous TiO2 suspensions. Determination of the reaction pathway and identification of intermediate products by various analytical methods, Water Res., 36, 2733, 10.1016/S0043-1354(01)00505-X Kryukova, 2007, Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 Dye upon ultraviolet light, Appl. Catal. B Environ., 71, 169, 10.1016/j.apcatb.2006.06.025 Kuvarega, 2011, Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation, J. Phys. Chem. C, 115, 22110, 10.1021/jp203754j Lai, 2010, Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources, J. Hazard. Mater., 184, 855, 10.1016/j.jhazmat.2010.08.121 Langhals, 2004, Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments, By Heinrich Zollinger. Angew. Chemie Int. Ed., 43, 5291, 10.1002/anie.200385122 Li, 2008, Facile Method for Fabricating Boron-Doped TiO 2 Nanotube Array with Enhanced Photoelectrocatalytic Properties, Ind. Eng. Chem. Res., 47, 3804, 10.1021/ie0712028 Li, 2013, A direct synthesis of B-doped TiO 2 and its photocatalytic performance on degradation of RhB, Appl. Surf. Sci., 265, 36, 10.1016/j.apsusc.2012.10.075 Lin, 2015, Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films, J. Photochem. Photobiol. A Chem., 307–308, 88, 10.1016/j.jphotochem.2015.04.010 Lin, 2015, Facile Synthesis and Characterization of N-Doped TiO2 Photocatalyst and Its Visible-Light Activity for Photo-Oxidation of Ethylene, J. Nanomater., 2015, 10.1155/2015/807394 Liu, 2014, Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis, Chem. Commun., 50, 13971, 10.1039/C4CC05544F Liu, 2005, Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts, Chemosphere, 61, 11, 10.1016/j.chemosphere.2005.03.069 Liu, 2017, Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core-shell structure for visible-light photocatalytic degradation, Cuihua Xuebao/Chinese J. Catal., 38, 1052, 10.1016/S1872-2067(17)62845-6 Lu, 2012, Mn-doped TiO 2 thin films with significantly improved optical and electrical properties, J. Phys. D. Appl. Phys., 45, 485102, 10.1088/0022-3727/45/48/485102 Lü, 2010, Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO 2 Electrodes: Efficient Electron Injection and Transfer, Adv. Funct. Mater., 20, 509, 10.1002/adfm.200901292 Marques, 2010, Photocatalytic degradation of C.I. Reactive Blue 19 with nitrogen-doped TiO2 catalysts thin films under UV/visible light, J. Mol. Struct., 983, 147, 10.1016/j.molstruc.2010.08.044 Martins, 2012, Removal of toxic metals from aqueous effluents by electrodeposition in a spouted bed electrochemical reactor, Environ. Technol., 33, 1123, 10.1080/09593330.2011.610361 Matos, 2007, Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation, Appl. Catal. B Environ., 70, 461, 10.1016/j.apcatb.2005.10.040 Matos, 2019, C-doped anatase TiO 2: Adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations, J. Colloid Interface Sci., 547, 14, 10.1016/j.jcis.2019.03.074 McManamon, 2015, A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity, J. Mol. Catal. A Chem., 406, 51, 10.1016/j.molcata.2015.05.002 Meetani, 2011, Mechanistic studies of photoinduced degradation of Orange G using LC/MS, RSC Adv., 1, 490, 10.1039/c1ra00177a Mekprasart, W., Pecharapa, W., 2011. Synthesis and characterization of nitrogen-doped TiO2 and its photocatalytic activity enhancement under visible light, in: Energy Procedia. Elsevier Ltd, pp. 509–514. https://doi.org/10.1016/j.egypro.2011.09.058. Mesgari, 2012, Spectrophotometric studies of visible light induced photocatalytic degradation of methyl orange using phthalocyanine-modified Fe-doped TiO 2 nanocrystals, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 92, 148, 10.1016/j.saa.2012.02.055 Mirkhani, 2009, Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalyst, J. Iran. Chem. Soc., 6, 578, 10.1007/BF03246537 Momeni, 2015, Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst, Ceram. Int., 41, 8735, 10.1016/j.ceramint.2015.03.094 Moradi, 2016, Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation, Ultrason. Sonochem., 32, 314, 10.1016/j.ultsonch.2016.03.025 Mugundan, 2015, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique, Appl. Nanosci., 5, 449, 10.1007/s13204-014-0337-y Naeem, 2010, Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light, Phys. B Condens. Matter, 405, 221, 10.1016/j.physb.2009.08.060 Nakhate, 2010, Hydrothermally derived nanosized Ni-doped TiO2: A visible light driven photocatalyst for methylene blue degradation, Mater. Chem. Phys., 124, 976, 10.1016/j.matchemphys.2010.08.007 Nasr, 1996, Environmental Photochemistry on Semiconductor Surfaces. Visible Light Induced Degradation of a Textile Diazo Dye, Naphthol Blue Black, on TiO 2 Nanoparticles, J. Phys. Chem., 100, 8436, 10.1021/jp953556v Neppolian, 1999, Degradation of textile dye by solar light using TiO 2 and ZnO photocatalysts. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst, Environ. Eng., 34, 1829 Nguyen-Phan, 2011, The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites, Chem. Eng. J., 170, 226, 10.1016/j.cej.2011.03.060 Obire, 2008, Impact of fertilizer plant effluent on water quality, Int. J. Environ. Sci. Technol., 5, 107, 10.1007/BF03326003 Ohno, 2004, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A Gen., 265, 115, 10.1016/j.apcata.2004.01.007 Padikkaparambil, 2013, Au/TiO2 reusable photocatalysts for dye degradation, Int. J. Photoenergy, 2013, 10.1155/2013/752605 Paola, 2001, Transition metal-doped TiO2: Physical properties and photocatalytic behavior, Int. J. Photoenergy, 3, 370924, 10.1155/S1110662X01000216 Park, 2013, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol. C Photochem. Rev., 15, 1, 10.1016/j.jphotochemrev.2012.10.001 Patil, 2019, Sulfated TiO2/WO3 nanocomposite: An efficient photocatalyst for degradation of Congo red and methyl red dyes under visible light irradiation, Mater. Chem. Phys., 225, 247, 10.1016/j.matchemphys.2018.12.041 Paulauskas, 2013, Photocatalytic activity of doped and undoped titanium dioxide nanoparticles synthesised by flame spray pyrolysis, Platin. Met. Rev., 10.1595/147106713X659109 Peng, 2012, Visible-light absorption and photocatalytic activity of Cr-doped TiO 2 nanocrystal films, Adv. Powder Technol., 23, 8, 10.1016/j.apt.2010.11.006 Potle, 2020, Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye, Optik. (Stuttg.), 208, 164555, 10.1016/j.ijleo.2020.164555 Poulios, 1999, Photocatalytic degradation of the textile dye reactive orange 16 in the presence of tio2 suspensions, Environ. Technol. (United Kingdom), 20, 479 Prakash, J., Sun, S., Swart, H.C., Gupta, R.K., 2018. Noble metals-TiO2 nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Appl. Mater. Today. https://doi.org/10.1016/j.apmt.2018.02.002. Prasannalakshmi, 2017, Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis, Mater. Sci. Semicond. Process., 61, 114, 10.1016/j.mssp.2017.01.008 Preethi, 2017, A Study on Doped Heterojunctions in TiO2 Nanotubes: An Efficient Photocatalyst for Solar Water Splitting, Sci. Rep., 7, 10.1038/s41598-017-14463-0 Prieto, 2005, Decolouration of textile dyes in wastewaters by photocatalysis with TiO2, Solar Energy, 79, 376, 10.1016/j.solener.2005.02.023 Przystaś, 2012, Biological removal of azo and triphenylmethane dyes and toxicity of process by-products, Water. Air. Soil Pollut., 223, 1581, 10.1007/s11270-011-0966-7 Rafqah, 2005, Degradation of metsulfuron methyl by heterogeneous photocatalysis on TiO2 in aqueous suspensions: Kinetic and analytical studies, J. Mol. Catal. A Chem., 237, 50, 10.1016/j.molcata.2005.03.044 Rahulan, 2011, Synthesis and optical limiting studies of Au-doped TiO2 nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol., 2, 025012, 10.1088/2043-6262/2/2/025012 Reddy, 2016, Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO2, Chem. Eng. Process. Process Intensif., 99, 10, 10.1016/j.cep.2015.10.019 Reyes, 2006, Degradation and inactivation of tetracycline by TiO2 photocatalysis, J. Photochem. Photobiol. A Chem., 184, 141, 10.1016/j.jphotochem.2006.04.007 Rodríguez Couto, 2009, Dye removal by immobilised fungi, Biotechnol. Adv., 27, 227, 10.1016/j.biotechadv.2008.12.001 Sacco, 2012, Photocatalytic degradation of organic dyes under visible light on n-doped TiO2 photocatalysts, Int. J. Photoenergy, 2012, 10.1155/2012/626759 Sadanandam, 2013, Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation, Int. J. Hydrogen Energy, 38, 9655, 10.1016/j.ijhydene.2013.05.116 Sangpour, 2010, Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO 2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study, J. Phys. Chem. C, 114, 13955, 10.1021/jp910454r Santos, 2015, Structural characterization of Ag-doped TiO2 with enhanced photocatalytic activity, RSC Adv., 5, 103752, 10.1039/C5RA22647C Selvam, 2010, Au-doped TiO2 nanoparticles for selective photocatalytic synthesis of quinaldines from anilines in ethanol, Tetrahedron Lett., 51, 4911, 10.1016/j.tetlet.2010.07.071 Şen, 2003, Anaerobic treatment of real textile wastewater with a fluidized bed reactor, Water Res., 37, 1868, 10.1016/S0043-1354(02)00577-8 Senthilkumaar, 2005, Photodegradation of a textile dye catalyzed by sol-gel derived nanocrystalline TiO2 via ultrasonic irradiation, J. Photochem. Photobiol. A Chem., 170, 225, 10.1016/j.jphotochem.2004.07.005 Shao, 2017, In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency, Appl. Catal. B Environ., 209, 311, 10.1016/j.apcatb.2017.03.008 Shao, 2015, Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan, Appl. Catal. B Environ., 179, 344, 10.1016/j.apcatb.2015.05.023 Sharma, 2007, A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests, Chemosphere, 69, 48, 10.1016/j.chemosphere.2007.04.086 Shende, 2018, Sonochemical synthesis of Graphene-Ce-TiO2 and Graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye, Ultrason. Sonochem., 41, 582, 10.1016/j.ultsonch.2017.10.024 Sheshmani, 2019, Modification of TiO 2 with graphene oxide and reduced graphene oxide; enhancing photocatalytic activity of TiO 2 for removal of remazol Black B, Polym. Compos., 40, 210, 10.1002/pc.24630 Siripala, 2003, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis, Sol. Energy Mater. Sol. Cells, 77, 229, 10.1016/S0927-0248(02)00343-4 Smith, 2015, A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture, Agric. Ecosyst. Environ., 209, 15, 10.1016/j.agee.2015.02.016 Sobana, 2008, Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2, Sep. Purif. Technol., 62, 648, 10.1016/j.seppur.2008.03.002 Song, 2008, Photocatalytic activity of (copper, nitrogen)-codoped titanium dioxide nanoparticles, J. Am. Ceram. Soc., 91, 1369, 10.1111/j.1551-2916.2008.02291.x Sood, 2015, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds, J. Colloid Interface Sci., 450, 213, 10.1016/j.jcis.2015.03.018 Srinivasan, 2006, Visible light photocatalysis via CdS/ TiO 2 nanocomposite materials, J. Nanomater., 2006, 10.1155/JNM/2006/87326 Sun, 2008, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, J. Hazard. Mater., 155, 312, 10.1016/j.jhazmat.2007.11.062 Swamy, 2001, Atomistic simulation of the crystal structures and bulk moduli of TiO2 polymorphs, J. Phys. Chem. Solids, 62, 887, 10.1016/S0022-3697(00)00246-8 Szaciłowski, 2005, Bioinorganic Photochemistry: Frontiers and Mechanisms, Chem. Rev., 105, 2647, 10.1021/cr030707e Tabasideh, 2017, Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles, Sep. Purif. Technol., 189, 186, 10.1016/j.seppur.2017.07.065 Tahir, 2021, Photocatalytic performance of hybrid WO3/TiO2 nanomaterials for the degradation of methylene blue under visible light irradiation, Int. J. Environ. Anal. Chem., 101, 1448, 10.1080/03067319.2019.1685093 Talebi, 2017, Application of nanoscale ZnS/TiO2 composite for optimized photocatalytic decolorization of a textile dye, J. Appl. Res. Technol., 15, 378, 10.1016/j.jart.2017.03.007 Tchounwou, 2012, Heavy metal toxicity and the environment, EXS Teh, 2011, Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review, J. Alloys Compd., 509, 1648, 10.1016/j.jallcom.2010.10.181 Thambiliyagodage, C., Mirihana, S., 2021. Photocatalytic activity of Fe and Cu co-doped TiO2 nanoparticles under visible light. J. Sol-Gel Sci. Technol. 2021 991 99, 109–121. https://doi.org/10.1007/S10971-021-05556-4. Tokudome, 2004, N-doped TiO 2 Nanotube with Visible Light Activity, Chem. Lett., 33, 1108, 10.1246/cl.2004.1108 Wang, 2011, Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B, J. Mol. Catal. A Chem., 345, 101, 10.1016/j.molcata.2011.05.026 Wang, 2019, Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation, Sep. Purif. Technol., 211, 673, 10.1016/j.seppur.2018.10.040 Wang, 2011, C-N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation, Appl. Catal. A Gen., 399, 252, 10.1016/j.apcata.2011.04.008 Wang, 2014, Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis, Ceram. Int., 40, 5107, 10.1016/j.ceramint.2013.09.028 Wang, 2017, Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity, J. Mater. Chem. A, 5, 5020, 10.1039/C6TA11121A Wang, 1999, Preparation, characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2 nanoparticles, J. Mater. Sci., 34, 3721, 10.1023/A:1004611724069 Wang, 2022, Sheet-on-sheet TiO2/Bi2MoO6 heterostructure for enhanced photocatalytic amoxicillin degradation, J. Hazard. Mater., 421, 126634, 10.1016/j.jhazmat.2021.126634 Wei, 2018, TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels, J. Mater. Chem. A, 6, 22411, 10.1039/C8TA08879A Wen, 2009, Effects of I and F codoped TiO2 on the photocatalytic degradation of methylene blue, Desalination, 249, 621, 10.1016/j.desal.2009.01.028 Wijetunga, 2010, Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor, J. Hazard. Mater., 177, 792, 10.1016/j.jhazmat.2009.12.103 Wilke, 1999, The influence of transition metal doping on the physical and photocatalytic properties of titania, J. Photochem. Photobiol. A Chem., 121, 49, 10.1016/S1010-6030(98)00452-3 Willis, 1982, Pesticides in agricultural runoff and their effects on downstream water quality, Environ. Toxicol. Chem., 1, 267 Wong, 2004, Discoloration and mineralization of non-biodegradable azo dye orange II by copper-doped TiO2 nanocatalysts. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst, Environ. Eng., 39, 2583 Wu, 2020, Visible light photocatalytic degradation of tetracycline over TiO2, Chem. Eng. J., 382, 122842, 10.1016/j.cej.2019.122842 Xin, 2008, Effect of surface species on Cu-TiO 2 photocatalytic activity, Appl. Surf. Sci., 254, 2569, 10.1016/j.apsusc.2007.09.002 Xiong, 2011, Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3 in organic pollutant degradation and water splitting, J. Phys. Chem. Solids, 72, 1104, 10.1016/j.jpcs.2011.06.016 Xu, 2008, Preparation and characterization of Cu2O-TiO2: Efficient photocatalytic degradation of methylene blue, Mater. Res. Bull., 43, 3474, 10.1016/j.materresbull.2008.01.026 Yang, 2010, High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst, Environ. Sci. Technol., 44, 7641, 10.1021/es101711k Yang, 2018, Conductive Nb-doped TiO2 thin films with whole visible absorption to degrade pollutants, Catal. Sci. Technol., 8, 1357, 10.1039/C7CY02614E Yang, 2015, Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles, Trans. Nonferrous Met. Soc. China (English Ed.), 25, 504, 10.1016/S1003-6326(15)63631-7 Yang, 2016, TiO2/graphene porous composite and its photocatalytic degradation of methylene blue, Mater. Des., 108, 632, 10.1016/j.matdes.2016.06.104 Yaseen, 2019, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Int. J. Environ. Sci. Technol., 16, 1193, 10.1007/s13762-018-2130-z Yılmaz, 2019, Photocatalytic degradation of amoxicillin using Co-doped TiO2 synthesized by reflux method and monitoring of degradation products by LC–MS/MS, 41, 414 Yu, 2007, Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film, Talanta, 72, 1667, 10.1016/j.talanta.2007.03.013 Yu, 2019, Evidence for a dual mechanism in the TiO2/CuxO photocatalyst during the degradation of sulfamethazine under solar or visible light: Critical issues, J. Photochem. Photobiol. A Chem., 375, 270, 10.1016/j.jphotochem.2019.02.033 Yu, 2005, Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal. B Environ., 60, 211, 10.1016/j.apcatb.2005.03.009 Yu, 2014, Enhanced visible light photocatalytic degradation of methylene blueby F-doped TiO 2, Appl. Surf. Sci., 319, 107, 10.1016/j.apsusc.2014.07.038 Zaleska, 2008, Doped-TiO2: A Review, Recent Patents Eng., 2, 157, 10.2174/187221208786306289 Zhang, 2014, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys., 16, 20382, 10.1039/C4CP02201G Zhang, 2016, Interfacial effect on Mn-doped TiO2 nanoparticles: From paramagnetism to ferromagnetism, RSC Adv., 6, 57403, 10.1039/C6RA06606B Zhang, 2011, TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties, Nanoscale, 3, 2943, 10.1039/c1nr10269a Zhang, 2012, Effects of calcination temperature on preparation of boron-doped TiO 2 by sol-gel method, Int. J. Photoenergy, 2012, 1, 10.1155/2012/314896 Zhang, 2013, Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange, Solid State Sci., 16, 16, 10.1016/j.solidstatesciences.2012.11.012 Zhang, 2015, C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity, Appl. Catal. B Environ., 165, 715, 10.1016/j.apcatb.2014.10.063 Zhao, 2015, High visible light photocatalytic property of Co2+-doped TiO2 nanoparticles with mixed phases, Superlattices Microstruct., 88, 32, 10.1016/j.spmi.2015.08.022 Zhao, 2017, Low temperature synthesis of water dispersible F-doped TiO2 nanorods with enhanced photocatalytic activity, RSC Adv., 7, 21547, 10.1039/C7RA00850C Zhu, 2010, Preparation and Photoelectrochemical Activity of Cr-Doped TiO 2 Nanorods with Nanocavities, J. Phys. Chem. C, 114, 2873, 10.1021/jp9085987 Zhu, 2007, Nanocrystalline Fe/TiO 2 Visible Photocatalyst with a Mesoporous Structure Prepared via a Nonhydrolytic Sol−Gel Route, J. Phys. Chem. C, 111, 18965, 10.1021/jp0751108 Zhu, 2012, Facile Fabrication of TiO2–Graphene Composite with Enhanced Photovoltaic and Photocatalytic Properties by Electrospinning, ACS Appl. Mater. Interfaces, 4, 581, 10.1021/am201448p