Activities of superoxide dismutase (SOD) isoforms during growth of Scenedesmus (chlorophyta) species and strains grown in batch-cultures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alscher R.G., Erturk N., Health L.S. 2002. Role of superoxide dismutases (SODs) in controling oxidative stress in plants. J. Exp. Bot., 53: 1331–1340.
Asada K., Badger M.R. 1984. Photoreduction of 18O2 and H2/18O2 with concomitant evolution of 16O2 in intact spinach chloroplasts: evidence for scavenging of hydrogen peroxide. Plant Cell Physiol., 25: 1169–79.
Beauchamp C., Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to poliacrylamide gels. Anal. Biochem., 44: 276–287.
Bordo D., Djinovic K., Bolognesi M. 1994. Conserved patterns in the Cu,Zn superoxide dismutase family. J. Mol. Biol., 238: 366–386.
Bowler C., van Montagu M., Inzé D., 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol., 43: 83–116.
Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.
Davis B.J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. Acad. Sci., 121: 404–427.
Fink R., Scandalios J.G. 2002. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other Eukariotic and Prokariotic superoxide dismutases. Arch. Bioch. Biophys. 399: 19–36.
Fogg G.E., Thake B. 1987. Algal cultures and phytoplankton ecology. The University of Wisconsin Press.
Gędziorowska D. 1983. Isolation of Baltic unicellular algae and obtaining axenic cultures for physiological and biochemical investigations. Stud. Mat. Oceanol., 41: 209–226.
van Hannen E., Fink P. and Lürling M. 2002. A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae. Eur. J. Phycol., 37: 203–208.
Hegewald E. 1989. The Scenedesmus strains of the Culture Collection of the University of Texas in Austin (UTEX). Acta Hydrobiol. Suppl. 8.22, Algol. Stud., 55: 153–189.
Lukavský J., Cepák V., Komárek J., Kašparková M., Takáčová M. 1992. alogue of algal and cyanobacterial strains of Culture Collection of Autotrophic Organisms at Třeboň, Czech Republic (CCALA). Algol. Stud., 63: 59–112.
Kanematsu S., Asada K. 1979. Ferric and manganic superoxide dismutases in Euglena gracilis. Arch. Biochem. Biophys., 195: 535–545.
Kessler E., Schäfer M., Hümmer C., Kloboucek A., Huss V.A.R. 1997. Physiological, biochemical and molecular characters for the taxonomy of subgeneras Scenedesmus (Chlorococales, Chlorophyta). Bot. Acta, 110: 244–250.
Kephart S.R. 1990. Starch gel electrophoresis of plant isoenzymes: a comparative analysis of techniques. Am. J. Bot., 77: 693–712.
Malanga G., Puntarulo S. 1995. Oxidative stress and antioxidants content in Chlorella vulgaris after exposure to ultra violet-B radiation. Physiol. Plant., 94: 672–679.
Mallick N., Mohn F.H., 2000. Reactive oxygen species: response of algal cells. J. Plant Physiol., 157: 183–193.
Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci., 7: 405–410.
Nichols W. H. 1973. Growth media-freshwater. In: Handbook of Phycological Methods. Culture Methods and Growth Measurements. Ed. by Janet R. Stein, Cambridge University Press, 7–24.
Ogawa K., Kanematsu S., Asada K. 1996. Intra- and extra-cellular localization of “cytosolic” Cu/Zn superoxide dismutase in spinach leaf hypocotyl. Plant Cell Physol., 37: 790–799.
Okada S., Kanematsu S. Asada K. 1979. Intracellular distribution of manganese and ferric superoxide dismutases in blue-green algae. FEBS Letters, 103: 106–110.
Okamoto O., Casano C. 1996. Effect of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis (Prasinophyceae) J. Phycol., 32: 74–79.
Okamoto O., Robertson D., Fagan T., Hastings J., Colepicolo P. 2001. Different regulatory mechanisms modulate the expression of a Dinnoflagellate iron-superoxide dismutase. J. Biol. Chem., 276: 19988–19993.
Polle A. 2001. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulation as a step towards flux analysis. Plant Physiol., 126: 445–462.
Rossa M.M., de Oliveira M.C., Okamoto O.K., Lopes P.F., Colepicolo P. 2002. Effect of visible light on superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). J. Appl. Phycol., 14: 151–157.
Schlösser U.G. 1994. Sammlung von Algenkulturen at the University of Göttingen. Catalogue of Strains. Bot. Acta, 107: 113–186.
Shiraiwa Y., Goyal A. Tolbert N.E. 1993. Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell Physiol., 34(5): 649–657.
Siguad-Kutner T.C.S., Pinto E., Okamoto O.K., Colepicolo P. 2002. Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankters in batch-cultures. Physiol. Plant., 114: 566–571.
Starr R., and Zeikus J.A. 1993. UTEX — The Culture Collection of Algae at the University of Texas at Austin J. Phycol., 29 Suppl., 1–97.
Tukaj Z., Bohdanowicz J. 1995. Sensitivity to fuel oil and cell wall structure of some Scenedesmus (Chlorococcales) species. Acta Soc. Bot. Pol., 64: 139–147.