Actively tunable mid-infrared Fano resonance in Ge2Sb2Te5-based grating structures

Optical Materials - Tập 88 - Trang 54-59 - 2019
Xiujuan Zou1, Gaige Zheng1,2, Yunyun Chen1,2, Fenglin Xian1, Linhua Xu1
1Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
2Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China

Tài liệu tham khảo

Miroshnichenko, 2010, Fano resonances in nanoscale structures, Rev. Mod. Phys., 82, 2257, 10.1103/RevModPhys.82.2257 Luk'yanchuk, 2010, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater., 9, 707, 10.1038/nmat2810 Khana, 2018, Multispectral broadband PIT and Fano resonance in skewed dipolar metasurface, Opt. Mater., 79, 480, 10.1016/j.optmat.2018.04.011 Blanchard, 2016, Fano resonances in photonic crystal slabs near optical bound states in the continuum, Phys. Rev. B, 94, 155303, 10.1103/PhysRevB.94.155303 Liron, 2014, Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system, Nat. Commun., 5, 4865, 10.1038/ncomms5865 Verellen, 2009, Fano resonances in individual coherent plasmonic nanocavities, Nano Lett., 9, 1663, 10.1021/nl9001876 Lassiter, 2010, Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability, Nano Lett., 10, 3184, 10.1021/nl102108u Lu, 2018, Plasmonic Fano spectral response from graphene metasurfaces in the MIR region, Opt. Mater. Express, 8, 1058, 10.1364/OME.8.001058 Lu, 2017, Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides, Photon. Res., 5, 2327, 10.1364/PRJ.5.000162 Gallinet, 2011, Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials, Phys. Rev. B, 83, 235427, 10.1103/PhysRevB.83.235427 Manjappa, 2017, Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial, Opt. Lett., 42, 2106, 10.1364/OL.42.002106 Li, 2017, Tailoring polarization of electromagnetically induced transparency based on non-centrosymmetric metasurfaces, Phys. Lett., 381, 3000, 10.1016/j.physleta.2017.07.025 Khan, 2018, Refractive index sensing with fano resonant L-shaped metasurface, Opt. Mater., 82, 168, 10.1016/j.optmat.2018.05.066 King, 2015, Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing, ACS Nano, 9, 10628, 10.1021/acsnano.5b04864 Limonov, 2017, Fano resonances in photonics, Nat. Photon., 11, 543, 10.1038/nphoton.2017.142 Ruan, 2018, Fano resonance in double waveguides with graphene for ultrasensitive biosensor, Optic Express, 26, 16884, 10.1364/OE.26.016884 Zhang, 2018, High-quality-factor multiple Fano resonances for refractive index sensing, Opt. Lett., 43, 1842, 10.1364/OL.43.001842 Ahmadivand, 2015, Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum, J. Opt. Soc. Am. A, 32, 204, 10.1364/JOSAA.32.000204 Li, 2016, Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material, Nat. Mater., 15, 870, 10.1038/nmat4649 Wuttig, 2017, Phase-change materials for non-volatile photonic applications, Nat. Photon., 11, 465, 10.1038/nphoton.2017.126 Raeis-Hosseini, 2017, Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices, Materials, 10, 1046, 10.3390/ma10091046 Zhang, 2018, Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit, Opt. Lett., 43, 94, 10.1364/OL.43.000094 Dong, 2018, Tunable mid-infrared phase-change metasurface, Adv. Opt. Mater., 6, 1701346, 10.1002/adom.201701346 Zheng, 2018, GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform, Opt. Mater. Express, 8, 1551, 10.1364/OME.8.001551 Ahmadivand, 2018, Optothermally controllable multiple high-order harmonics generation by Ge2Sb2Te5-mediated Fano clusters, Opt. Mater., 84, 301, 10.1016/j.optmat.2018.07.026 Qu, 2018, Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5, Opt. Mater. Express, 8, 2312, 10.1364/OME.8.002312 Shirmanesh, 2018, Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability, Nano Lett., 18, 2957, 10.1021/acs.nanolett.8b00351 Qu, 2017, Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST, Laser Photon. Rev., 11, 1700091, 10.1002/lpor.201700091 Chen, 2015, Tunable near-infrared plasmonic perfect absorber based on phase-change materials, Photon. Res., 3, 54, 10.1364/PRJ.3.000054 Li, 1980, Refractive index of alkaline earth halides and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data, 9, 161, 10.1063/1.555616 Moharam, 1982, Diffraction analysis of dielectric surface-relief gratings, J. Opt. Soc. Am., 72, 1385, 10.1364/JOSA.72.001385 Li, 1997, New formulation of the Fourier modal method for crossed surface-relief gratings, J. Opt. Soc. Am. A, 14, 2758, 10.1364/JOSAA.14.002758 Lu, 2018, Flexibly tunable high-quality-factor induced transparency in plasmonic systems, Sci. Rep., 8, 1558, 10.1038/s41598-018-19869-y Du, 2017, Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST, Light Sci. Appl., 6, 10.1038/lsa.2016.194 Du, 2018, Wavelength-tunable mid-infrared thermal emitters with nonvolatile phase changing material, Nanoscale, 10, 4415, 10.1039/C7NR09672K Collin, 2010, Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.027401 Khan, 2018, Refractive index sensing with fano resonant L-shaped metasurface, Opt. Mater., 82, 168, 10.1016/j.optmat.2018.05.066 Zheng, 2017, Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications, Opt. Mater., 66, 171, 10.1016/j.optmat.2017.02.001 Zarrabi, 2016, Graphene-Gold Nano-ring antenna for Dual-resonance optical application, Opt. Mater., 51, 98, 10.1016/j.optmat.2015.11.024