Các phương pháp ổn định chủ động của hệ thống điện năng với tải công suất không đổi: một bài tổng quan

Journal of Modern Power Systems and Clean Energy - Tập 2 - Trang 233-243 - 2014
Mingfei WU1, Dylan Dah-Chuan LU1
1School of Electrical and Information Engineering, The University of Sydney, Darlington, Australia

Tóm tắt

Hệ thống điện hiện đại đã gia tăng việc sử dụng bộ chuyển đổi nguồn điện chuyển mạch. Các bộ chuyển đổi nguồn điện chuyển mạch được điều chỉnh chặt chẽ này hoạt động như các tải công suất không đổi (CPLs). Chúng thể hiện một trở kháng gia tăng âm trong phân tích tín hiệu nhỏ. Trở kháng âm này làm giảm biên độ ổn định của sự tương tác giữa các CPLs và các bộ dẫn của chúng, được biết đến như vấn đề bất ổn định do trở kháng âm. Bộ dẫn có thể là bộ lọc đầu vào LC hoặc bộ chuyển đổi chuyển mạch upstream. Các phương pháp giảm chấn chủ động được ưa chuộng để ổn định hệ thống. Điều này là do chúng có hiệu suất năng lượng cao hơn so với các phương pháp giảm chấn thụ động. Dựa trên các nguồn khác nhau của hiệu ứng giảm chấn, bài báo này tổng hợp và phân loại các phương pháp giảm chấn chủ động hiện có thành ba loại. Bài báo còn phân tích và so sánh các ưu điểm và nhược điểm của từng phương pháp giảm chấn chủ động.

Từ khóa

#ổn định hệ thống điện #tải công suất không đổi #phương pháp giảm chấn chủ động #trở kháng âm #bất ổn định #hiệu suất năng lượng

Tài liệu tham khảo

Rahimin AM, Khaligh A, Emadi A (2006) Design and implementation of an analog constant power load for studying cascaded converters. In: Proceedings of the 32nd annual conference on IEEE industrial electronics society (IECON’06), Paris, 6–10 Nov 2006, pp 1709–1714 Liu XY, Forsyth AJ, Cross AM (2007) Negative input-resistance compensator for a constant power load. IEEE Trans Ind Electron 54(6):3188–3196 Kwasinski A, Krein PT (2007) Passivity-based control of buck converters with constant-power loads. In:Proceedings of the 2007 IEEE power electronics specialists conference (PESC’07), Orlando, 17–21 Jun 2007, pp 259–265 Emadi A, Khaligh A, Rivetta CH et al (2006) Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans Veh Technol 55(4):1112–1125 Rivetta C, Williamson GA (2004) Global behaviour analysis of a DC-DC boost power converter operating with constant power load. In: Proceedings of the 2004 international symposium on circuits and systems (ISCAS’04), vol 5. Vancouver, Canada, 23–26 May 2004, pp 956–959 Rivetta CH, Emadi A, Williamson GA et al (2006) Analysis and control of a buck DC-DC converter operating with constant power load in sea and undersea vehicles. IEEE Trans Ind Appl 42(2):559–572 Rahimi AM, Emadi A (2009) An analytical investigation of DC/DC power electronic converters with constant power loads in vehicular power systems. IEEE Trans Veh Technol 58(6):2689–2702 Riccobono A, Santi E (2012) Comprehensive review of stability criteria for DC power distribution systems. In: Proceedings of the 2012 IEEE energy conversion congress and exposition (ECCE’12), Raleigh, 15–20 Sept 2012, pp 3917–3925 Middlebrook RD (1976) Input filter considerations in design and application of switching regulators. In: Proceedings of the IEEE industry applications society annul meeting (IAS’76), Chicago, 11–14 Oct 1976, pp 366–382 Wildrick CM, Lee FC, Cho BH et al (1995) A method of defining the load impedance specification for a stable distributed power system. IEEE Trans Power Electron 10(3):280–285 Sudhoff SD, Glover SF, Lamm PT et al (2000) Admittance space stability analysis of power electronic systems. IEEE trans aero electron syst 36(3-Part 1):965–973 Feng XG, Liu JJ, Lee FC (2002) Impedance specifications for stable DC distributed power systems. IEEE Trans Power Electron 17(2):157–162 Du W, Zhang J, Zhang Y et al (2013) Stability criterion for cascaded system with constant power load. IEEE Trans Power Electron 28(4):1843–1851 Rahimi AM, Emadi A (2009) Active damping in DC/DC power electronic converters: A novel method to overcome the problems of constant power loads. IEEE Trans Ind Electron 56(5):1428–1439 Rahimi AM, Williamson GA, Emadi A (2010) Loop-cancellation technique: A novel nonlinear feedback to overcome the destabilizing effect of constant-power loads. IEEE Trans Veh Technol 59(2):650–661 Onwuchekwa CN, Kwasinski A (2009) Boundary control of buck converters with constant-power loads. In: Proceedings of the 31st international telecommunications energy conference (INTELEC’09), Incheon, 18–22 Oct 2009, 6 pp Onwuchekwa CN, Kwasinski A (2011) Analysis of boundary control for boost and buck-boost converters in distributed power architectures with constant-power loads. In: Proceedings of the 26th annual IEEE applied power electronics conference and exposition (APEC’11), Fort Worth, 6–11 Mar 2011, pp 1816–1823 Zhao Y, Qiao W, Ha D (2014) A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Trans Ind Appl 50(2):1448–1458 Zeng J, Zhang Z, Qiao W (2014) An interconnection and damping assignment passivity-based controller for a DC-DC boost converter with a constant power load. IEEE Trans Ind Appl 50(4):2314–2322 Radwan AAA, Mohamed YARI (2012) Linear active stabilization of converter-dominated DC microgrids. IEEE Trans Smart Grid 3(1):203–216 Zhang XN, Vilathgamuwa DM, Foo G, et al (2013) Cascaded sliding mode control for global stability of three phase AC/DC PWM rectifier with rapidly varying power electronic loads. In: Proceedings of the 39th annual conference of the IEEE industrial electronics society, (IECON’13), Vienna, 10–13 Nov 2013, pp 4580–4587 Magne P, Marx D, Nahid-Mobarakeh B et al (2012) Large-signal stabilization of a DC-link supplying a constant power load using a virtual capacitor: Impact on the domain of attraction. IEEE Trans Ind Appl 48(3):878–887 Mohamed YARI, Radwan AAA, Lee TK (2012) Decoupled reference-voltage-based active DC-link stabilization for PMSM drives with tight-speed regulation. IEEE Trans Ind Electron 59(12):4523–4536 Lee WJ, Sul SK (2014) DC-link voltage stabilization for reduced DC-link capacitor inverter. IEEE Trans Ind Appl 50(1):404–414 Liutanakul P, Awan AB, Pierfederici S et al (2010) Linear stabilization of a DC bus supplying a constant power load: A general design approach. IEEE Trans Power Electron 25(2):475–488 Glover SF, Sudhoff SD (1998) An experimental validated nonlinear stabilizing control for power electronics based power systems. In: Proceedings of the SAE aerospace power system conference (APSC’98), Detroit, 21–23 Apr 1998, pp 71–88 Mosskull H, Galic J, Wahlberg B (2007) Stabilization of induction motor drives with poorly damped input filters. IEEE Trans Ind Electron 54(5):2724–2734 Sudhoff SD, Corzine KA, Glover SF et al (1998) DC link stabilized field oriented control of electric propulsion system. IEEE Trans Energ Conver 13(1):27–33 Inoue K, Kato T, Inoue M, et al (2012) An oscillation suppression method of a DC power supply system with a constant power load and a LC filter. In: Proceedings of the IEEE 13th workshop on control and modeling for power electronics (COMPEL’12), Kyoto, 10–13 Jun 2012, 4 pp Zhang X, Ruan X, Kim H et al (2013) Adaptive active capacitor converter for improving stability of cascaded DC power supply system. IEEE Trans Power Electron 28(4):1807–1816 Grigore V, Hatonen J, Kyyra J et al (1998) Dynamics of a buck converter with a constant power load. In: Proceedings of the 29th annual IEEE power electronics specialists conference (PESC’98), vol 1. Fukuoka, 17–22 May 1998, pp 72–78 Rahimi AM, Emadi A (2010) Discontinuous-conduction mode DC/DC converters feeding constant-power loads. IEEE Trans Ind Electron 57(4):1318–1329 Spiazzi G, Mattavelli P, Rossetto L (1997) Power factor preregulators with improved dynamic response. IEEE Trans Power Electron 12(2):343–349 Prodic A, Chen JQ, Maksimovic D, et al (2003) Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response. IEEE trans power electron 18(1-Part 2):420–428 Lamar DG, Fernandez A, Arias M et al (2008) A unity power factor correction preregulator with fast dynamic response based on a low-cost microcontroller. IEEE Trans Power Electron 23(2):635–642 Wall S, Jackson R (1997) Fast controller design for single-phase power-factor correction systems. IEEE Trans Ind Electron 44(5):654–660 Rezaei K, Golbon N, Moschopoulos G(2014) A new control scheme for an AC-DC single-stage buck-boost PFC converter with improved output ripple reduction and transient response. In: Proceedings of the 29th annual IEEE applied power electronics conference and exposition (APEC’14), Fort Worth, 16-20 Mar 2014, pp 1866–1873 Belkhayat M, Cooley R, Witulski A (1995) Large signal stability criteria for distributed systems with constant power loads. In: Proceedings of the 26th annual IEEE power electronics specialists conference (PESC ‘95), vol 2. Atlanta, 18–22 Jun 1995, pp 1333–1338 Liu XY, Forsyth AJ (2005) Comparative study of stabilizing controllers for brushless DC motor drive systems. In: Proceedings of the 2005 IEEE international conference on electric machines and drives, San Antonio, 15–18 May 2005, pp 1725–1731