Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses

Matrix Biology - Tập 49 - Trang 37-60 - 2016
Ulrich Eckhard1, Pitter F. Huesgen1,2, Oliver Schilling1,3, Caroline L. Bellac1,4, Georgina S. Butler1, Jennifer H. Cox1,5, Antoine Dufour1, Verena Goebeler1, Reinhild Kappelhoff1, Ulrich auf dem Keller1,6, Théo Klein1, Philipp F. Lange1,7, Giada Marino1, Charlotte Morrison1,8, Anna Prudova1, David Rodrı́guez1,9, Amanda E. Starr1,10, Yili Wang1, Christopher M. Overall1,11
1Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
2Present address: Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
3Present address: Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
4Present address: Swissmedic, Swiss Agency for Therapeutic Products, Bern, Switzerland
5Present address: Inception Sciences, Vancouver, BC, Canada
6Present address: Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
7Present address: Department of Pathology, University of British Columbia, Vancouver, BC, Canada
8Present address: Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
9Present address: Department of Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
10Present address: Ottawa Institute of Systems Biology, University of Ottawa, Canada
11Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tallant, 2010, Matrix metalloproteinases: fold and function of their catalytic domains, Biochim. Biophys. Acta, 1803, 20-8

Maskos, 2003, Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases, Mol. Biotechnol., 25, 241, 10.1385/MB:25:3:241

Murphy, 2008, Progress in matrix metalloproteinase research, Mol. Asp. Med., 29, 290, 10.1016/j.mam.2008.05.002

Nagase, 2006, Structure and function of matrix metalloproteinases and TIMPs, Cardiovasc. Res., 69, 562, 10.1016/j.cardiores.2005.12.002

Van Wart, 1990, The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family, Proc. Natl. Acad. Sci. U. S. A., 87, 5578, 10.1073/pnas.87.14.5578

Butler, 2009, Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics, Biochemistry (Mosc), 48, 10830, 10.1021/bi901656f

Hynes, 2012, Overview of the matrisome—an inventory of extracellular matrix constituents and functions, Cold Spring Harb. Perspect. Biol., 4, a004903, 10.1101/cshperspect.a004903

Chen, 2007, Expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinases during mouse embryonic development, Reprod. Camb. Engl., 133, 405, 10.1530/rep.1.01020

Deryugina, 2015, Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature, Matrix Biol. J. Int. Soc. Matrix Biol., 44–46, 94, 10.1016/j.matbio.2015.04.004

Itoh, 2006, MT1-MMP: a key regulator of cell migration in tissue, IUBMB Life, 58, 589, 10.1080/15216540600962818

Aiken, 2010, Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice, Biochim. Biophys. Acta, 1803, 121, 10.1016/j.bbamcr.2009.07.002

Mott, 2004, Regulation of matrix biology by matrix metalloproteinases, Curr. Opin. Cell Biol., 16, 558, 10.1016/j.ceb.2004.07.010

Giannelli, 1997, Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5, Science, 277, 225, 10.1126/science.277.5323.225

Schenk, 2003, Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution, J. Cell Biol., 161, 197, 10.1083/jcb.200208145

Xu, 2001, Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo, J. Cell Biol., 154, 1069, 10.1083/jcb.200103111

Agnihotri, 2001, Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin), J. Biol. Chem, 276, 28261, 10.1074/jbc.M103608200

Sage, 2003, Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis, J. Biol. Chem, 278, 37849, 10.1074/jbc.M302946200

Monboisse, 1840, Matrikines from basement membrane collagens: a new anti-cancer strategy, Biochim. Biophys. Acta, 2014, 2589

Ricard-Blum, 2014, Matricryptins and matrikines: biologically active fragments of the extracellular matrix, Exp. Dermatol., 23, 457, 10.1111/exd.12435

Wells, 2015, MMP generated matrikines, Matrix Biol., 44–46, 122, 10.1016/j.matbio.2015.01.016

Butler, 2013, Matrix metalloproteinase processing of signaling molecules to regulate inflammation, Periodontol., 63, 123, 10.1111/prd.12035

Morrison, 2009, Matrix metalloproteinase proteomics: substrates, targets, and therapy, Curr. Opin. Cell Biol., 21, 645, 10.1016/j.ceb.2009.06.006

Schlage, 2015, Proteomic approaches to uncover MMP function, Matrix Biol. J. Int. Soc. Matrix Biol., 44–46, 232, 10.1016/j.matbio.2015.01.003

Fortelny, 2014, Network analyses reveal pervasive functional regulation between proteases in the human protease web, PLoS Biol., 12, 10.1371/journal.pbio.1001869

Sturrock, 2014, Highlight: the protease web, Biol. Chem., 395, 1133, 10.1515/hsz-2014-0237

Auf dem Keller, 2013, Systems-level analysis of proteolytic events in increased vascular permeability and complement activation in skin inflammation, Sci. Signal., 6, 10.1126/scisignal.2003512

Bellac, 2014, Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis, Cell Rep., 9, 618, 10.1016/j.celrep.2014.09.006

Haro, 2000, Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption, J. Clin. Invest., 105, 143, 10.1172/JCI7091

Suzuki, 1997, Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site, J. Biol. Chem., 272, 31730, 10.1074/jbc.272.50.31730

Zhang, 2003, HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration, Nat. Neurosci., 6, 1064, 10.1038/nn1127

McQuibban, 2000, Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3, Science, 289, 1202, 10.1126/science.289.5482.1202

Wilson, 1999, Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense, Science, 286, 113, 10.1126/science.286.5437.113

Poulalhon, 2006, Modulation of collagen and MMP-1 gene expression in fibroblasts by the immunosuppressive drug rapamycin. A direct role as an antifibrotic agent?, J. Biol. Chem., 281, 33045, 10.1074/jbc.M606366200

Dufour, 2013, Missing the target: matrix metalloproteinase antitargets in inflammation and cancer, Trends Pharmacol. Sci., 34, 233, 10.1016/j.tips.2013.02.004

Shay, 2015, Moving targets: emerging roles for MMPs in cancer progression and metastasis, Matrix Biol. J. Int. Soc. Matrix Biol., 44–46, 200, 10.1016/j.matbio.2015.01.019

Bonnans, 2014, Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Biol., 15, 786, 10.1038/nrm3904

Cox, 2011, Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer, Dis. Model. Mech., 4, 165, 10.1242/dmm.004077

Lu, 2011, Extracellular matrix degradation and remodeling in development and disease, Cold Spring Harb. Perspect. Biol., 3, 10.1101/cshperspect.a005058

Kessenbrock, 2015, Matrix metalloproteinases in stem cell regulation and cancer, Matrix Biol. J. Int. Soc. Matrix Biol., 44–46, 184, 10.1016/j.matbio.2015.01.022

Itoh, 2015, Membrane-type matrix metalloproteinases: their functions and regulations, Matrix Biol. J. Int. Soc. Matrix Biol., 44–46, 207, 10.1016/j.matbio.2015.03.004

Overall, 2002, Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites, Mol. Biotechnol., 22, 51, 10.1385/MB:22:1:051

Patterson, 2001, Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain, FEBS Lett., 503, 158, 10.1016/S0014-5793(01)02723-5

Steffensen, 1995, Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen, J. Biol. Chem., 270, 11555, 10.1074/jbc.270.19.11555

Gomis-Rüth, 1824, A standard orientation for metallopeptidases, Biochim. Biophys. Acta, 2012, 157

Harris, 2000, Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries, Proc. Natl. Acad. Sci., 97, 7754, 10.1073/pnas.140132697

Kasperkiewicz, 2012, Current and prospective applications of non-proteinogenic amino acids in profiling of proteases substrate specificity, Biol. Chem., 393, 843, 10.1515/hsz-2012-0167

Schilling, 2007, Proteomic discovery of protease substrates, Curr. Opin. Chem. Biol., 11, 36, 10.1016/j.cbpa.2006.11.037

Schilling, 2008, Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites, Nat. Biotechnol., 26, 685, 10.1038/nbt1408

Schilling, 2011, Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry, Nat. Protoc., 6, 111, 10.1038/nprot.2010.178

Barré, 2014, Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries, PLoS One, 9, 10.1371/journal.pone.0105984

Becker-Pauly, 2011, Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates, Mol. Cell Proteomics, 10, 10.1074/mcp.M111.009233

Cruz, 2014, RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes, PLoS Pathog., 10, 10.1371/journal.ppat.1004324

Eckhard, 2014, Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen, J. Proteome, 100, 102, 10.1016/j.jprot.2013.10.004

Marino, 2014, Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity, Biochem. J., 457, 335, 10.1042/BJ20130196

Turk, 2001, Determination of protease cleavage site motifs using mixture-based oriented peptide libraries, Nat. Biotechnol., 19, 661, 10.1038/90273

Chen, 2003, A residue in the S2 subsite controls substrate selectivity of matrix metalloproteinase-2 and matrix metalloproteinase-9, J. Biol. Chem, 278, 17158, 10.1074/jbc.M210324200

Kridel, 2001, Substrate hydrolysis by matrix metalloproteinase-9, J. Biol. Chem, 276, 20572, 10.1074/jbc.M100900200

Reiter, 1999, Inhibition of MMP-1 and MMP-13 with phosphinic acids that exploit binding in the S2 pocket, Bioorg. Med. Chem. Lett., 9, 127, 10.1016/S0960-894X(98)00729-X

Deng, 2000, Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library, J. Biol. Chem., 275, 31422, 10.1074/jbc.M004538200

McGeehan, 1994, Characterization of the peptide substrate specificities of interstitial collagenase and 92-kDa gelatinase. Implications for substrate optimization, J. Biol. Chem., 269, 32814, 10.1016/S0021-9258(20)30064-8

Smith, 1995, Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries, J. Biol. Chem., 270, 6440, 10.1074/jbc.270.12.6440

Nagase, 1994, Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3), J. Biol. Chem., 269, 20952, 10.1016/S0021-9258(17)31914-2

Nagase, 1996, Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides, Biopolymers, 40, 399, 10.1002/(SICI)1097-0282(1996)40:4<399::AID-BIP5>3.0.CO;2-R

Netzel-Arnett, 1993, Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin), Biochemistry (Mosc), 32, 6427, 10.1021/bi00076a016

Bode, 1999, Structural properties of matrix metalloproteinases, Cell Mol. Life Sci., 55, 639, 10.1007/s000180050320

Ratnikov, 2014, Basis for substrate recognition and distinction by matrix metalloproteinases, Proc. Natl. Acad. Sci. U. S. A., 111, E4148, 10.1073/pnas.1406134111

Dean, 2008, Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx, Blood, 112, 3455, 10.1182/blood-2007-12-129080

Rawlings, 2014, MEROPS: the database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res., 42, D503, 10.1093/nar/gkt953

Overall, 2002, Discovery of chemokine substrates for matrix metalloproteinases by exosite scanning: a new tool for degradomics, Biol. Chem., 383, 1059, 10.1515/BC.2002.114

Li, 2002, Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury, Cell, 111, 635, 10.1016/S0092-8674(02)01079-6

Knight, 1992, A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases, FEBS Lett., 296, 263, 10.1016/0014-5793(92)80300-6

London, 2011, Rosetta FlexPepDock web server—high resolution modeling of peptide–protein interactions, Nucleic Acids Res., 39, W249, 10.1093/nar/gkr431

Kukreja, 2015, High-throughput multiplexed peptide-centric profiling illustrates both substrate cleavage redundancy and specificity in the MMP family, Chem. Biol., 22, 1122, 10.1016/j.chembiol.2015.07.008

Prudova, 2010, Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics, Mol. Cell Proteomics, 9, 894, 10.1074/mcp.M000050-MCP201

Kohno, 2006, Crystal structures of the catalytic domain of human stromelysin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453, Biochem. Biophys. Res. Commun., 344, 315, 10.1016/j.bbrc.2006.03.098

Kleifeld, 2010, Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products, Nat. Biotechnol., 28, 281, 10.1038/nbt.1611

Kleifeld, 2011, Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates, Nat. Protoc., 6, 1578, 10.1038/nprot.2011.382

Fields, 2015, New strategies for targeting matrix metalloproteinases, Matrix Biol. J. Int. Soc. Matrix Biol., 44–46, 239, 10.1016/j.matbio.2015.01.002

Sela-Passwell, 2011, New opportunities in drug design of metalloproteinase inhibitors: combination between structure–function experimental approaches and systems biology, Expert Opin. Drug Discov., 6, 527, 10.1517/17460441.2011.560936

Morrison, 2006, TIMP independence of matrix metalloproteinase (MMP)-2 activation by membrane type 2 (MT2)-MMP is determined by contributions of both the MT2-MMP catalytic and hemopexin C domains, J. Biol. Chem., 281, 26528, 10.1074/jbc.M603331200

Butler, 2004, The canonical methionine 392 of matrix metalloproteinase 2 (gelatinase A) is not required for catalytic efficiency or structural integrity: probing the role of the methionine-turn in the metzincin metalloprotease superfamily, J. Biol. Chem., 279, 15615, 10.1074/jbc.M312727200

Rozanov, 2003, Membrane type-1 matrix metalloproteinase functions as a proprotein self-convertase. Expression of the latent zymogen in Pichia pastoris, autolytic activation, and the peptide sequence of the cleavage forms, J. Biol. Chem, 278, 8257, 10.1074/jbc.M213246200

The UniProt Consortium, 2014, Activities at the Universal Protein Resource (UniProt), Nucleic Acids Res., 42, D191, 10.1093/nar/gku469

Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinforma Oxf. Engl. 2004;20:1466–7. doi:http://dx.doi.org/10.1093/bioinformatics/bth092.

Keller, 2002, Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal. Chem., 74, 5383, 10.1021/ac025747h

Keller, 2005, A uniform proteomics MS/MS analysis platform utilizing open XML file formats, Mol. Syst. Biol., 1, 2005.0017, 10.1038/msb4100024

Schilling, 2011, Factor Xa subsite mapping by proteome-derived peptide libraries improved using WebPICS, a resource for proteomic identification of cleavage sites, Biol. Chem., 392, 1031, 10.1515/BC.2011.158

Kersey, 2004, The International Protein Index: an integrated database for proteomics experiments, Proteomics, 4, 1985, 10.1002/pmic.200300721

Colaert, 2009, Improved visualization of protein consensus sequences by iceLogo, Nat. Methods, 6, 786, 10.1038/nmeth1109-786

Vizcaíno, 2013, The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013, Nucleic Acids Res., 41, D1063, 10.1093/nar/gks1262

Abel, 2003, Pre-steady-state kinetics of Bacillus licheniformis 1,3–1,4-beta-glucanase: evidence for a regulatory binding site, Biochem. J., 371, 997, 10.1042/bj20021504

Antoni, 2013, Crystallization of bi-functional ligand protein complexes, J. Struct. Biol., 182, 246, 10.1016/j.jsb.2013.03.015

Browner, 1995, Matrilysin-inhibitor complexes: common themes among metalloproteases, Biochemistry (Mosc), 34, 6602, 10.1021/bi00020a004

Fernandez-Catalan, 1998, Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor, EMBO J., 17, 5238, 10.1093/emboj/17.17.5238

Hashimoto, 2011, Structural basis for matrix metalloproteinase-2 (MMP-2)-selective inhibitory action of β-amyloid precursor protein-derived inhibitor, J. Biol. Chem., 286, 33236, 10.1074/jbc.M111.264176

Iyer, 2006, Crystal structure of an active form of human MMP-1, J. Mol. Biol., 362, 78, 10.1016/j.jmb.2006.06.079

Matter, 1999, Quantitative structure–activity relationship of human neutrophil collagenase (MMP-8) inhibitors using comparative molecular field analysis and X-ray structure analysis, J. Med. Chem., 42, 1908, 10.1021/jm980631s

Nar, 2001, Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor, J. Mol. Biol., 312, 743, 10.1006/jmbi.2001.4953

Steele, 2000, Expression, characterization and structure determination of an active site mutant (Glu202-Gln) of mini-stromelysin-1, Protein Eng., 13, 397, 10.1093/protein/13.6.397

Bordoli, 2012, Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal, Methods Mol. Biol., 857, 107, 10.1007/978-1-61779-588-6_5

DeLano, 2005, The case for open-source software in drug discovery, Drug Discov. Today, 10, 213, 10.1016/S1359-6446(04)03363-X

Kabsch, 1983, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 22, 2577, 10.1002/bip.360221211

Yang, 2012, UCSF chimera, MODELLER, and IMP: an integrated modeling system, J. Struct. Biol., 179, 269, 10.1016/j.jsb.2011.09.006

Dolinsky, 2004, PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations, Nucleic Acids Res., 32, W665, 10.1093/nar/gkh381

Olsson, 2011, PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions, J. Chem. Theory Comput., 7, 525, 10.1021/ct100578z

Baker, 2001, Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad. Sci. U. S. A., 98, 10037, 10.1073/pnas.181342398

Lerner, 2008

Bond, 2003, TopDraw: a sketchpad for protein structure topology cartoons, Bioinforma Oxf. Engl., 19, 311, 10.1093/bioinformatics/19.2.311

Winn, 2011, Overview of the CCP4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr., 67, 235, 10.1107/S0907444910045749

Wessel, 1984, A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids, Anal. Biochem., 138, 141, 10.1016/0003-2697(84)90782-6

Marchant, 2014, A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity, Nat. Med., 20, 493, 10.1038/nm.3508