Active self-training for weakly supervised 3D scene semantic segmentation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Qi, C. R.; Yi, L.; Su, H.; Guibas, L. J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 5105–5114, 2017.
Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution on X-transformed points. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, 828–838, 2018.
Thomas, H.; Qi, C. R.; Deschaud, J. E.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 6410–6419, 2019.
Han, L.; Zheng, T.; Xu, L.; Fang, L. OccuSeg: Occupancy-aware 3D instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2937–2946, 2020.
Dai, A.; Chang, A. X.; Savva, M.; Halber, M.; Funkhouser, T.; Niessner, M. ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2432–2443, 2017.
Armeni, I.; Sax, S.; Zamir, A. R.; Savarese, S. Joint 2D-3D-semantic data for indoor scene understanding. arXiv preprint arXiv:1702.01105, 2017.
Wei, J. C.; Lin, G. S.; Yap, K. H.; Hung, T. Y.; Xie, L. H. Multi-path region mining for weakly supervised 3D semantic segmentation on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4383–4392, 2020.
Xu, X.; Lee, G. H. Weakly supervised semantic point cloud segmentation: Towards 10× fewer labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13703–13712, 2020.
Gadelha, M.; RoyChowdhury, A.; Sharma, G.; Kalogerakis, E.; Cao, L. L.; Learned-Miller, E.; Wang, R.; Maji, S. Label-efficient learning on point clouds using approximate convex decompositions. In: Computer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12355. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 473–491, 2020.
Xie, S. N.; Gu, J. T.; Guo, D. M.; Qi, C. R.; Guibas, L.; Litany, O. PointContrast: Unsupervised pre-training for 3D point cloud understanding. In: Computer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12348. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 574–591, 2020.
Jiang, L.; Shi, S. S.; Tian, Z. T.; Lai, X.; Liu, S.; Fu, C. W.; Jia, J. Y. Guided point contrastive learning for semi-supervised point cloud semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 6403–6412, 2021.
Hou, J.; Graham, B.; Niesner, M.; Xie, S. N. Exploring data-efficient 3D scene understanding with contrastive scene contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 15582–15592, 2021.
Choy, C.; Gwak, J.; Savarese, S. 4D spatio-temporal ConvNets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3070–3079, 2019.
Liu, Z. Z.; Qi, X. J.; Fu, C. W. One thing one click: A self-training approach for weakly supervised 3D semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1726–1736, 2021.
Hu, R. Z.; Wen, C.; Van Kaick, O.; Chen, L. M.; Lin, D.; Cohen-Or, D.; Huang, H. Semantic object reconstruction via casual handheld scanning. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 219, 2018.
Wu, T. H.; Liu, Y. C.; Huang, Y. K.; Lee, H. Y.; Su, H. T.; Huang, P. C.; Hsu, W. H. ReDAL: Region-based and diversity-aware active learning for point cloud semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 15490–15499, 2021.
Shi, X.; Xu, X.; Chen, K.; Cai, L.; Foo, C. S.; Jia, K. Label-efficient point cloud semantic segmentation: An active learning approach. arXiv preprint arXiv:2101.06931, 2021.
Wu, Z. R.; Song, S. R.; Khosla, A.; Yu, F.; Zhang, L. G.; Tang, X. O.; Xiao, J. X. 3D ShapeNets: A deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1912–1920, 2015.
Charles, R. Q.; Hao, S.; Mo, K. C.; Guibas, L. J. PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 77–85, 2017.
Wu, W. X.; Qi, Z. A.; Li, F. X. PointConv: Deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern, 9613–9622, 2019.
Komarichev, A.; Zhong, Z. C.; Hua, J. A-CNN: Annularly convolutional neural networks on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7413–7422, 2019.
Su, H.; Jampani, V.; Sun, D. Q.; Maji, S.; Kalogerakis, E.; Yang, M. H.; Kautz, J. SPLATNet: Sparse lattice networks for point cloud processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2530–2539, 2018.
Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-voxel CNN for efficient 3D deep learning. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article No. 87, 965–975, 2019.
Ye, X. Q.; Li, J. M.; Huang, H. X.; Du, L.; Zhang, X. L. 3D recurrent neural networks with context fusion for point cloud semantic segmentation. In: Computer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11211. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 415–430, 2018.
Guo, M. H.; Cai, J. X.; Liu, Z. N.; Mu, T. J.; Martin, R. R.; Hu, S. M. PCT: Point cloud transformer. Computational Visual Media Vol. 7, No. 2, 187–199, 2021.
Peng, H. T.; Zhou, B.; Yin, L. Y.; Guo, K.; Zhao, Q. P. Semantic part segmentation of single-view point cloud. Science China Information Sciences Vol. 63, No. 12, 224101, 2020.
Kundu, A.; Yin, X. Q.; Fathi, A.; Ross, D.; Brewington, B.; Funkhouser, T.; Pantofaru, C. Virtual multi-view fusion for 3D semantic segmentation. In: Computer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12369. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 518–535, 2020.
Dai, A.; Nießner, M. 3DMV: Joint 3D-multi-view prediction for 3D semantic scene segmentation. In: Computer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11214. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 458–474, 2018.
Graham, B.; Engelcke, M.; van der Maaten, L. 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9224–9232, 2018.
Landrieu, L.; Simonovsky, M. Large-scale point cloud semantic segmentation with superpoint graphs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4558–4567, 2018.
Tatarchenko, M.; Park, J.; Koltun, V.; Zhou, Q. Y. Tangent convolutions for dense prediction in 3D. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3887–3896, 2018.
Huang, S. S.; Ma, Z. Y.; Mu, T. J.; Fu, H. B.; Hu, S. M. Supervoxel convolution for online 3D semantic segmentation. ACM Transactions on Graphics Vol. 40, No. 3, Article No. 34, 2021.
Zhang, J. Z.; Zhu, C. Y.; Zheng, L. T.; Xu, K. Fusion-aware point convolution for online semantic 3D scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4533–4542, 2020.
Cheng, M. M.; Hui, L.; Xie, J.; Yang, J. SSPC-net: Semi-supervised semantic 3D point cloud segmentation network. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 35, No. 2, 1140–1147, 2021.
Zhang, Z. W.; Girdhar, R.; Joulin, A.; Misra, I. Self-supervised pretraining of 3D features on any point-cloud. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 10232–10243, 2021.
Yi, L.; Kim, V. G.; Ceylan, D.; Shen, I. C.; Yan, M. Y.; Su, H.; Lu, C. W.; Huang, Q. X.; Sheffer, A.; Guibas, L. A scalable active framework for region annotation in 3D shape collections. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 210, 2016.
Rizve, M. N.; Duarte, K.; Rawat, Y. S.; Shah, M. In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning. arXiv preprint arXiv:2101.06329, 2021.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga L.; et al. PyTorch: An imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article No. 721, 8026–8037, 2019.