Active-learning and materials design: the example of high glass transition temperature polymers

Springer Science and Business Media LLC - Tập 9 Số 3 - Trang 860-866 - 2019
Chiho Kim1, Anand Chandrasekaran1, Anurag Jha1, Rampi Ramprasad1
1School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, GA, 30332, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. Mannodi-Kanakkithodi, T.D. Huan, and R. Ramprasad: Mining materials design rules from data: the example of polymer dielectrics. Chem. Mater. 29, 9001–9010 (2017).

T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, and R. Ramprasad: Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 83, 236–269 (2016).

A. Mannodi-Kanakkithodi, G. Pilania, and R. Ramprasad: Critical assessment of regression-based machine learning methods for polymer dielectrics. Comput. Mater. Sci. 125, 123–135 (2016).

T.D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania, and R. Ramprasad: A polymer dataset for accelerated property prediction and design. Sci. Data 3, 160012 (2016).

A. Mannodi-Kanakkithodi, G. Pilania, R. Ramprasad, T. Lookman, and J.E. Gubernatis: Multi-objective optimization techniques to design the pareto front of organic dielectric polymers. Comput. Mater. Sci. 125, 92–99 (2016).

A. Mannodi-Kanakkithodi, G. Pilania, T.D. Huan, T. Lookman, and R. Ramprasad: Machine learning strategy for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).

A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T.D. Huan, G. Pilania, V. Botu, and R. Ramprasad: Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond. Mater. Today 21, 785–796 (2018).

A. Mannodi-Kanakkithodi, G.M. Treich, T.D. Huan, R. Ma, M. Tefferi, Y. Cao, G.A. Sotzing, and R. Ramprasad: Rational co-design of polymer dielectrics for energy storage. Adv. Mater. 28, 6277–6291 (2016).

V. Sharma, C.C. Wang, R.G. Lorenzini, R. Ma, Q. Zhu, D.W. Sinkovits, G. Pilania, A.R. Oganov, S. Kumar, G.A. Sotzing, S.A. Boggs, and R. Ramprasad: Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014).

D. Das, A. Chandrasekaran, S. Venkatram, and R. Ramprasad: Effect of crystallinity on Li adsorption in polyethylene oxide. Chem. Mater. 30, 8804–8810 (2018).

S.P. Ong, O. Andreussi, Y. Wu, N. Marzari, and G. Ceder: Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chem. Mater. 23, 2979–2986 (2011).

M.K. Warmuth, J. Liao, G. Rätsch, M. Mathieson, S. Putta, and C. Lemmen: Active learning with support vector machines in the drug discovery process. J. Chem. Inf. Comput. Sci. 43, 667–673 (2003). PMID: 12653536.

B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, and N. De Freitas: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

B. Rouet-Leduc, C. Hulbert, K. Barros, T. Lookman, and C.J. Humphreys: Automatized convergence of optoelectronic simulations using active machine learning. Appl. Phys. Lett. 111, 043506 (2017).

R. Yuan, Z. Liu, P.V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, and T. Lookman: Accelerated discovery of large electrostrains in BaTiO3-based piezo-electrics using active learning. Adv. Mater. 30, 1702884 (2018).

T. Mueller, A.G. Kusne, and R. Ramprasad: Machine learning in materials science: recent progress and emerging applications. In Reviews in Computational Chemistry, edited by A.L. Parrill and K.B. Lipkowitz (John Wiley & Sons, Inc., New York, 29, 2016), pp. 186–273.

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim: Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 54 (2017).

D.J. Audus and J.J. de Pablo: Polymer informatics: opportunities and challenges. ACS Macro Lett. 6, 1078–1082 (2017).

J.S. Peerless, N.J. Milliken, T.J. Oweida, M.D. Manning, and Y.G. Yingling: Adv. Theory Simul. 2, 1800129 (2018).

S. Thrun: Handbook of Brain Science and Neural Networks (MIT Press, Cambridge, 1995), pp. 381–384.

J. Brandup, E.H. Immergut, and E.A. Grulke: Polymer Handbook, 4th ed. (John Wiley and Sons, New York, 1999).

J. Bicerano: Prediction of Polymer Properties (Marcel Dekker, Inc., New York, USA, 2002).

Polymer Properties Database. http://polymerdatabase.com, (accessed April 10, 2019).

B. Rouet-Leduc, K. Barros, T. Lookman, and C.J. Humphreys: Optimization of GaN LEDs and the reduction of efficiency droop using active machine learning. Sci. Rep. 6, 24862 (2016).

L. Bassman, P. Rajak, R.K. Kalia, A. Nakano, F. Sha, J. Sun, D.J. Singh, M. Aykol, P. Huck, K. Persson, and P. Vashishta: Active learning for accelerated design of layered materials. npj Comput. Mater. 4, 74 (2018).

D. Weininger: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36 (1988).

C. Kim, A. Chandrasekaran, T.D. Huan, D. Das, and R. Ramprasad: Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 122, 17575–17585 (2018).

P. Pankajakshan, S. Sanyal, O.E. de Noord, I. Bhattacharya, A. Bhattacharyya, and U. Waghmare: Machine learning and statistical analysis for materials science: stability and transferability of fingerprint descriptors and chemical insights. Chem. Mater. 29, 4190–4201 (2017).

T.D. Huan, A. Mannodi-Kanakkithodi, and R. Ramprasad: Accelerated materials property predictions and design using motif-based fingerprints. Phys. Rev. B 92, 14106 (2015).

P. Labute: J. Mol. Graph. Model. 18, 464–477 (2000).

P. Ertl, B. Rohde, and P. Selzer: Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43, 3714–3717 (2000).

S. Prasanna and R. Doerksen: Topological polar surface area: a useful descriptor in 2D-QSAR. Curr. Med. Chem. 16, 21–41 (2009).

K. Nguyen, L. Blum, R. van Deursen, and J-L. Reymond: Classification of organic molecules by molecular quantum numbers. ChemMedChem 4, 1803–1805 (2009).

RDKit: Open Source Toolkit for Cheminformatics. http://www.rdkit.org/ (accessed April 10, 2019).

A. Forrester and A.K.A. Sóbester: Engineering Design via Surrogate Modelling (John Wiley and Sons, Chichester, West Sussex, 2008).