Hoạt động thoát khí CO2 trong vỏ trái đất ở những khu vực va chạm kiến tạo: Nghiên cứu trường hợp từ các khu vực Pollino và Calabria (Nam Ý)

Paolo Randazzo1, Antonio Caracausi2, Alessandro Aiuppa1, Carlo Cardellini3,4, Giovanni Chiodini4, Carmine Apollaro5, Michele Paternoster6,2, Angelo Rosiello3, Giovanni Vespasiano5
1Department of Earth and Marine Sciences (DiSTeM), Università di Palermo, Palermo, Italy
2Section of Palermo, National Institute of Geophysics and Volcanology (INGV), Palermo, Italy
3Department of Physics and Geology, Università degli Studi di Perugia, Perugia, Italy
4Section of Bologna, National Institute of Geophysics and Volcanology (INGV), Bologna, Italy
5Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria (UniCAL), Arcavacata di Rende, Calabria, Italy
6Department of Sciences, University of Basilicata, Potenza, Italy

Tóm tắt

Carbon dioxide (CO2) được phát thải từ nội tâm của Trái Đất vào bầu khí quyển thông qua cả nguồn núi lửa và phi núi lửa trong nhiều bối cảnh kiến tạo khác nhau. Việc hiểu biết định lượng về lưu lượng thoát khí CO2 ở các bối cảnh địa chất khác nhau là rất quan trọng để giải mã mối liên hệ giữa ngân sách carbon toàn cầu và các quá trình tự nhiên khác nhau (ví dụ, sự phun trào núi lửa và sự hình thành động đất) cũng như tác động của chúng đến sự phát triển khí hậu qua các thời đại địa chất. Gần đây, người ta đã đề xuất rằng sự thoát khí CO2 từ những khu vực phi núi lửa là một thành phần chính trong ngân sách phát thải CO2 tự nhiên, nhưng dữ liệu hiện có vẫn còn thưa thớt và chưa đầy đủ. Tại đây, chúng tôi báo cáo kết quả của một cuộc khảo sát địa hóa nhằm định lượng lượng phát thải CO2 qua các suối nước nóng và lạnh ở khối Pollino và vòng cung Calabria (Nam Ý), nơi có hoạt động kiến tạo. Thành phần hóa học và đồng vị (He và C) của năm mươi lăm mẫu khí hòa tan cho phép xác định hai miền khác nhau: 1) một hệ thống nông có sự chiếm ưu thế của các thành phần khí có đặc trưng khí quyển (helium, sau đây là He) và nguồn gốc sinh học (C), và 2) một hệ thống sâu hơn là nơi mà các chất lỏng trong vỏ/trong sâu (CO2 và He) chiếm ưu thế. Tỷ lệ đồng vị He đo được dao động từ 0.03 đến 1.1 Ra (trong đó Ra là tỷ lệ đồng vị He trong khí quyển) cho thấy sự ô nhiễm khí quyển thay đổi. Hơn nữa, dữ liệu đồng vị He chỉ ra sự hiện diện của dấu vết đóng góp của He từ manti (2%–3%) trong nước ngầm nhiệt. Các giá trị R/Ra thấp chiếm ưu thế phản ánh sự bổ sung He đồng vị phóng xạ 4He trong quá trình tuần hoàn nước ngầm. Sử dụng dữ liệu đồng vị helium và carbon, chúng tôi khám phá các nguồn có thể của chất lỏng và các quá trình thứ cấp (hoà tan/ kết tủa) tác động đến việc thay đổi hóa học của các chất dễ bay hơi tinh khiết. Đối với các suối nước nóng, chúng tôi ước tính sản lượng C sâu là 2.3 x 107 đến 6.1 x 108 mol năm−1. Những giá trị này tương ứng với các lưu lượng CO2 sâu theo km vuông tương đương với những giá trị được ước tính trong một số khu vực núi lửa đang hoạt động và không hoạt động, cũng như trong các vùng lục địa bị ảnh hưởng bởi sự thoát khí CO2 biến chất (ví dụ, rìa phía nam của Cao nguyên Tây Tạng).

Từ khóa


Tài liệu tham khảo

Acquafredda, 1994, Palaeozoic sequences and evolution of the calabrian-peloritan arc (southern Italy), Terra nova., 6, 582, 10.1111/j.1365-3121.1994.tb00525.x

Aiuppa, 2019, CO2 flux emissions from the Earth's most actively degassing volcanoes, 2005–2015, Sci. Rep., 9, 5442, 10.1038/s41598-019-41901-y

Allocca, 2007, Note illustrative della Carta idrogeologica dell’Italia meridionale. [Illustrative notes of the Hydrogeological map of southern Italy]. Istituto Poligrafico e Zecca dello Stato, ISBN 88-448-0215-5 (p. 211), ISBN 88-448-0223-6 (3 maps included)

Amodio Morelli, 1976, L’arco calabropeloritano nell’orogene appenninico-magrebide, Mem. Soc. Geol. It, 17, 1

Apollaro, , Vard`e, M., Fuoco, I., Barca, D., Bloise, A., Miriello, D., Cofone, F., Servidio, A., De Rosa, RComparative geochemical study between the tap waters and the bottled mineral waters in Calabria (southern Italy) by compositional data analysis (CoDA) developments, Appl. Geochem., 107, 19, 10.1016/j.apgeochem.2019.05.011

Apollaro, 2020, Fluid geochemistry in a low-enthalpy geothermal field along a sector of southern Apennines chain (Italy), J. Geochem. Explor., 219, 106618, 10.1016/j.gexplo.2020.106618

Apollaro, 2012, Chemical and isotopic characterization of the thermo mineral water of Terme Sibarite springs (Northern Calabria, Italy), Geochem. J., 46, 117, 10.2343/geochemj.1.0166

Apollaro, 2021, Geochemical modeling of water-rock interaction processes in the Pollino National Park. Geofluids 17, 10.1155/2021/6655711

Apollaro, , Release and fate of Cr (VI) in the ophiolitic aquifers of Italy: The role of Fe (III) as a potential oxidant of Cr (III) supported by reaction path modelling, Sci. Total Environ., 660, 1459, 10.1016/j.scitotenv.2019.01.103

Apollaro, , Chemical, isotopic and geotectonic relations of the warm and cold waters of the Galatro and Antonimina thermal areas, southern Calabria, Italy, Mar. Pet. Geol., 109, 469, 10.1016/j.marpetgeo.2019.06.020

Apollaro, 2015, Use of mean residence time and flowrate of thermal waters to evaluate the volume of reservoir water contributing to the natural discharge and the related geothermal reservoir volume. Application to Northern Thailand hot springs, Geothermics, 58, 62, 10.1016/j.geothermics.2015.09.006

Apollaro, 2016, Use of mean residence time of water, flowrate, and equilibrium temperature indicated by water geothermometers to rank geothermal resources. Application to the thermal water circuits of Northern Calabria, J. Volcanol. Geotherm. Res., 328, 147, 10.1016/j.jvolgeores.2016.10.014

Atzori, 1984, Remnants of the hercynian orogen along the “calabrian-peloritan arc”, southern Italy: A review, J. Geol. Soc. Lond., 141, 137, 10.1144/gsjgs.141.1.0137

Ballentine, 2002, Production, release and transport of noble gases in the continental crust, Rev. Mineralogy Geochem., 47, 481, 10.2138/rmg.2002.47.12

Barnes, 1978, Global distribution of carbon dioxide discharges, and major zones of seismicity. Water resour. Invest, 78

Barry, 2021, Helium-carbon systematics of groundwaters in the lassen peak region, Chem. Geol., 584, 120535, 10.1016/j.chemgeo.2021.120535

Barry, 2020, Volatile sources, sinks and pathways: A helium-carbon isotope study of baja California fluids and gases, Chem. Geol., 550, 119722, 10.1016/j.chemgeo.2020.119722

Beccaluva, 1981, K/Ar age determinations on some Tethyan ophiolites, Rend. Soc. Ital. Mineral, Pet., 37, 869

Becker, 2008, Himalayan metamorphic CO2 fluxes: Quantitative constraints from hydrothermal springs, Earth Planet. Sci. Lett., 265, 616, 10.1016/j.epsl.2007.10.046

Bencini, 1982, Caratteristiche geochimiche di alcune acque termali della provincia di Catanzaro, Rendiconti Simp., 38, 1189

Berner, 1989, Modeling the geochemical carbon cycle, Sci. Am., 260, 74, 10.1038/scientificamerican0389-74

Borsi, 1968, Données géochronologiques sur l’histoire hercynienne et Alpine de la Calabre Centrale, C. R. Acad. Sci, Ser. D., 266, 72

Boschi, 2000, Catalogue of strong Italian earthquakes, 461 B.C. to 1997, Ann. Geofisc, 43, 609, 10.4401/ag-3668

Brutto, 2016, The neogene-quaternary geodynamic evolution of the central Calabrian arc: A case study from the Western Catanzaro Trough basin, J. Geodyn., 102, 95, 10.1016/j.jog.2016.09.002

Burton, 2013, Deep carbon emissions from volca-noes, Rev. Mineral. Geochem., 75, 323, 10.2138/rmg.2013.75.11

Calcara, 1993, Sulla scelta di Siti idonei al Monitoraggio geochimico ai fini della sorveglianza sisimica della Calabria settentrionale: Valle Crati⁄ piana di Sibari. Atti convegno nazionale GNGTS

Capasso, 2005, On-line technique for preparing and measuring stable carbon isotope of total dissolved inorganic carbon in water samples (δ 13CTDIC), Ann. Geophys., 48, 159, 10.4401/ag-3190

Capasso, 1998, A simple method for the determination of dissolved gases in natural waters: An application to the thermal waters from Volcano Island,, Appl. Geochem., 13, 631, 10.1016/s0883-2927(97)00109-1

Caracausi, 2015, Mantle CO2 degassing at Mt. Vulture volcano (Italy): Relationship between CO2 outgassing of volcanoes and the time of their last eruption, Earth Planet. Sci. Lett., 411, 268, 10.1016/j.epsl.2014.11.049

Caracausi, 2019, Outgassing of mantle volatiles in compressional tectonic regime away from volcanism: The role of continental delamination, Geochem. Geophys. Geosyst., 20, 2007, 10.1029/2018GC008046

CSI, Catalogo della sismicità italiana 1981–2002, versione 1.1, INGV-CNT Roma CastelloB. SelvaggiG. ChiarabbaC. AmatoA. 2006

Catalano, 2008, Active faulting and seismicity along the siculo-calabrian rift zone (southern Italy), Tectonophysics, 453, 177, 10.1016/j.tecto.2007.05.008

Chiarabba, 2008, - the southern Tyrrhenian subduction zone, Deep geometry, magmatism Plio-Pleistocenen EEarth Planet. Sci. Lett, 268, 408, 10.1016/j.epsl.2008.01.036

Chiarella, 2012, Sedimentary features of the Lower Pleistocene mixed siliciclastic- bioclastic tidal deposits of the Catanzaro Strait (Calabrian Arc, south Italy), Rend. Online Soc. Geol. Ital., 21, 919

Chiarella, 2016, Deformed cross-stratified deposits in the early Pleistocene tidally-dominated Catanzaro Strait-fill succession, Calabrian arc (southern Italy): Triggering mechanisms and environmental significance, Sediment. Geol., 344, 277, 10.1016/j.sedgeo.2016.05.003

Chiodini, 2011, Inguagg iato S. & Matteucc i F- Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes, Earth Planet. Sci. Lett., 304, 389, 10.1016/j.epsl.2011.02.016

Chiodini, 2004, - Carbon dioxide Earth degassing and seismogenesis in central and southern Italy, Geophys. Res. Lett., 31, L07615, 10.1029/2004GL019480

Chiodini, 2020, Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Sci. Adv., 10.1126/sciadv.abc2938

Chiodini, 2000, Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: The case of central Apennine, Italy, J. Geophys. Res., 105, 8423, 10.1029/1999jb900355

Cirrincione, 2015, The Calabria-Peloritani Orogen, a composite terrane in Central Mediterranean; its overall architecture and geodynamic significance for a pre-Alpine scenario around the Tethyan basin. Progresses in Deciphering Structures and Compositions of Basement Rocks. Period, Mineral, 84, 701, 10.2451/2015PM0446

Cirrincione, 2008, Poly-orogenic multi-stage metamorphic evolution inferred via P-T pseudosections: An example from Aspromonte Massif basement rocks (Southern Calabria, Italy), Lithos, 103, 466, 10.1016/j.lithos.2007.11.001

Clark, 1997, environmental isotopes in hydrogeology CRC press/lewis publishers, Boca Raton, 328

Dai, 1996, Geochemistry and accumulation of carbon dioxide gases in China, AAPG Bull., 80, 1615, 10.1306/64EDA0D2-1724-11D7-8645000102C1865D

Dasgupta, 2013, Ingassing, storage, and outgassing of terrestrial carbon through geologic time, Rev. Mineralogy Geochem., 75, 183, 10.2138/rmg.2013.75.7

De Matteis, 2021, Pore fluid pressure imaging of the Mt. Pollino region (southern Italy) from earthquake focal mechanisms, Geophys. Res. Lett., 48, e2021GL094552, 10.1029/2021GL094552

De Vita, 2018, Hydrogeology of continental southern Italy, J. Maps, 14, 230, 10.1080/17445647.2018.1454352

Deines, 1974, Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters, Geochimica Cosmochimica Acta, 38, 1147, 10.1016/0016-7037(74)90010-6

Del Moro, 1986, Tectonic structure and post-hercynian evolution of the serre, Calabrian arc, southern Italy: Geological, petrological and radiometric evidences, Tectonophysics, 124, 223, 10.1016/0040-1951(86)90202-7

Devoti, 2008, New GPS constraints on the kinematics of the Apennines subduction, Earth Planet. Sci. Lett., 273, 163, 10.1016/j.epsl.2008.06.031

Di Stefano, 2009, Shallow subduction beneath Italy: Three-dimensional images of the Adriatic-European-Tyrrhenian lithosphere system based on high-quality P wave arrival times, J. Geophys. Res., 114, B05305, 10.1029/2008jb005641

Dichicco, 2019, Mineralogical asbestos assessment in the southern apennines (Italy): A review, Fibers, 2019, 24, 10.3390/fib7030024

Duchi, 1991, Caratteristiche geochimiche dei fluidi della Calabria centro settentrionale e loro potenzialit`a geotermiche, Boll. Soc. Geol. It, 110, 273

Dumas, 2004, Late Pleistocene tectonic activity deduced from uplifted marine terraces in Calabria, facing the Strait of Messina, Quat. nuova VIII, 79

Eberhard, 2021, Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens, Geochimica Cosmochimica Acta, 300, 192, 10.1016/j.gca.2021.02.030

Ellis, 1963, The solubility of carbon dioxide above 100 degrees C in water and in sodium chloride solutions, Am. J. Sci., 261, 47, 10.2475/ajs.261.1.47

Evans, 2011, Metamorphic carbon fluxes: How much and how fast?, Geology, 39, 95, 10.1130/focus012011.1

Evans, 2008, Degassing of metamorphic carbon dioxide from the Nepal Himalaya, Geochem. Geophys. Geosyst., 10.1029/2007GC001796

Faccenna, 2001, History of subduction and back-arc extension in the central Mediterranean, Geophys. J. Int., 145, 809, 10.1046/j.0956-540x.2001.01435.x

Faccenna, 2011, Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna, Tectonics, 30, 2010TC002694, 10.1029/2010tc002694

Famin, 2008, Earthquakes produce carbon dioxide in crustal faults, Earth Planet. Sci. Lett., 265, 487, 10.1016/j.epsl.2007.10.041

Ferranti, 2008, Holocene activity of the scilla fault, southern Calabria: Insights from coastal morphological and structural investigations, Tectonophysics, 453, 74, 10.1016/j.tecto.2007.05.006

Fischer, 2013, DEep CArbon DEgassing: The deep carbon observatory DECADE initiative, Mineral. Mag., 77, 1089

Fischer, 2020, AGU centennial grand challenge: Volcanoes and deep carbon global CO 2 emissions from subaerial volcanism—recent progress and future challenges, Geochem. Geophys. Geosyst., 21, e2019GC008690, 10.1029/2019GC008690

Fischer, 2019, The emissions of CO2 and other volatiles from the world's subaerial volcanoes, Sci. Rep., 9, 18716, 10.1038/s41598-019-54682-1

Foster, 2017, Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, 10.1038/ncomms14845

Frondini, 2019, Measuring and interpreting CO 2 fluxes at regional scale: The case of the apennines, Italy, J. Geol. Soc. Lond., 176, 408, 10.1144/jgs2017-169

Guo, 2021, India-Asia collision as a driver of atmospheric CO2 in the Cenozoic, Nat. Commun., 12, 3891, 10.1038/s41467-021-23772-y

Gaillardet, 2008, Science, 320, 1727, 10.1126/science.1159279

Gilfillan, 2009, Solubility trapping in formation water as dominant CO2 sink in natural gas fields, Nature, 458, 614, 10.1038/nature07852

Girault, 2014, The syabru-bensi hydrothermal system in central Nepal: 1. Characterization of carbon dioxide and radon fluxesThe syabru–bensi hydrothermal system in central Nepal: 1. Characterization of carbon dioxide and radon fluxes. Journal of geophysical research:, J. Geophys. Res. Solid Earth, 119, 4017, 10.1002/2013jb010301

Graessner, 2001, An exposed Hercynian deep crustal section in the Sila Massif of Northern Calabria: Mineral chemistry, petrology and a P-T path of granulite-facies metapelitic migmatites and metabasites, J. Petrology, 42, 931, 10.1093/petrology/42.5.931

Groppo, 2020, The fate of calcareous pelites in collisional orogens. J. Metamorph. Geol, 10.1111/jmg.12568

Groppo, 2013, - Metamorphic CO2 production from calc-silicate rocks via garnet-forming reactions in the CFAS-H2O-CO2 system, Contrib. Mineral. Pet., 166, 1655, 10.1007/s00410-013-0947-5

Groppo, 2022, CO2 outgassing during collisional orogeny is facilitated by the generation of immiscible fluids, Commun. Earth Environ., 3, 13, 10.1038/s43247-022-00340-w

Groppo, 2017, - metamorphic CO2 production in collisional orogens: Petrologic constraints from phase diagram modeling of himalayan, scapolite-bearing, calc-silicate rocks in the NKC(F)MAS(T)-HC system. Journal of petrology, 10.1093/petrology/egx005

2004, Catalogo parametrico dei terremoti italiani, versione 2004 (CPTI04), INGV

Gurrieri, 1984, Indagine preliminare su alcune sorgenti termali della Calabria per una futura sorveglianza geochimica dell’attivit`a sismica, Min. Petrog. Acta, 28, 101

Hoefs, 2018, Variations of stable isotope ratios in nature, Stable isotope geochemistry, 229, 10.1007/978-3-319-78527-1_3

Holland, 2013, Application of noble gases to the viability of CO2 storageThe noble gases as geochemical tracers. Advances in isotope geochemistry, 177, 10.1007/978-3-642-28836-4_8

Hollenstein, 2003, New GPS constraints on the Africa-Eurasia plate boundary zone in southern Italy, Geophys. Res. Lett., 30, 1935, 10.1029/2003gl017554

Hunt, 1996, Responses of a C3 and a C4 perennial grass to elevated CO2 and temperature under different water regimes, Glob. Chang. Biol., 2, 35, 10.1111/j.1365-2486.1996.tb00047.x

Iannace, 2007, Di staso, A., macaione, E., Messina A., reddy S.M., somma R., zamparelli V., zattin M. and Bonardi, GThe carbonate tectonic units of northern Calabria (Italy): A record of apulian palaeomargin evolution and Miocene convergence, continental crust subduction, and exhumation of HP–LT rocks, J. Geol. Soc. Lond., 164, 1165, 10.1144/0016-76492007-017

Inguaggiato, 2004, Dissolved helium isotope ratios in ground-waters: A new technique based on gas–water re-equilibration and its application to stromboli volcanic system, Appl. Geochem., 19, 665, 10.1016/j.apgeochem.2003.10.009

Italiano, 2009, Helium and carbon isotopes in the dissolved gases of Friuli Region (NE Italy): Geochemical evidence of CO2 production and degassing over a seismically active area, Chem. Geol., 266, 76, 10.1016/j.chemgeo.2009.05.022

Italiano, 2010, Geochemistry of fluids discharged over the seismic area of the southern apennines (Calabria region, southern Italy): Implications for fluid-fault relationships, Appl. Geochem., 25, 540, 10.1016/j.apgeochem.2010.01.011

Italiano, 2008, CO2 degassing over seismic areas: The role of mechanochemical production at the study case of central apennines, Pure Appl. Geophys., 165, 75, 10.1007/s00024-007-0291-7

Jolivet, 2000, Mediterranean extension and the Africa-Eurasia collision, Tectonics, 19, 1095, 10.1029/2000tc900018

Kerrick, 2001, Present and past nonanthropogenic CO2 degassing from the solid Earth, Rev. Geophys., 39, 565, 10.1029/2001rg000105

Lee, 2019, A framework for understanding whole-Earth carbon cycling, Deep carbon: Past to present, 313, 10.1017/9781108677950.011

Lee, 2016, Massive and prolonged deep carbon emissions associated with continental rifting, Nat. Geosci., 9, 145, 10.1038/ngeo2622

Liberi, 2006, Geodynamic significance of ophiolites within the Calabrian arc, Isl. Arc, 15, 26, 10.1111/j.1440-1738.2006.00520.x

Liberi, 2011, Permo-Triassic thermal events in the lower Variscan continental crust section of the Northern Calabrian Arc, Southern Italy: Insights from petrological data and in situ U-Pb zircon geochronology on gabbros, Lithos, 124, 291, 10.1016/j.lithos.2011.02.016

Liu, 2020, Effects of chemical weathering and CO2 outgassing on δ13CDIC signals in a karst watershed, J. Hydrology, 589, 125192, 10.1016/j.jhydrol.2020.125192

Longhitano, 2014, Three-dimensional to two-dimensional cross-strata transition in the lower Pleistocene Catanzaro tidal strait transgressive succession (southern Italy), Sedimentology, 61, 2136, 10.1111/sed.12138

Lucente, 1999, Tomographic constraints on the geodynamic evolution of the Italian region, J. Geophys. Res., 104, 20307, 10.1029/1999jb900147

Malinverno, 1986, Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere, Tectonics, 5, 227, 10.1029/tc005i002p00227

Margiotta, 2014, Seasonal groundwater monitoring for trace-elements distribution and Cr(VI) pollution in an area affected by negligible anthropogenic effects, Fresen Environ. Bull., 23, 1

Margiotta, 2012, Trace element distribution and Cr(VI) speciation in Ca-HCO3 and Mg-HCO3 spring waters from the northern sector of the Pollino massif, southern Italy, J. Geochem. Explor., 115, 1, 10.1016/j.gexplo.2012.01.006

Marty, 2020, An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: Geochemical and cosmochemical implications, Earth Planet. Sci. Lett., 551, 116574, 10.1016/j.epsl.2020.116574

Menzies, 2018, Carbon dioxide generation and drawdown during active orogenesis of siliciclastic rocks in the Southern Alps, New Zealand, Earth Planet. Sci. Lett., 481, 305, 10.1016/j.epsl.2017.10.010

Messina, 1994, Il massiccio della Sila settore settentrionale dell’Arco calabro-peloritano, Boll. Soc. Geol. It., 113, 539

Micheletti, 2007, Latest Precambrian to Early Cambrian U–Pb zircon ages of augen gneisses from Calabria (Italy), with inference to the Alboran microplate in the evolution of the peri-Gondwana terranes, Int. J. Earth Sci., 96, 843, 10.1007/s00531-006-0136-0

Minissale, 2004, Origin, transport and discharge of CO2 in central Italy, Earth. Sci. Rev., 66, 89, 10.1016/j.earscirev.2003.09.001

Monaco, 1996, From collisional to rifted basins: An example from the southern Calabrian Arc (Italy), Tectonophysics, 266, 233, 10.1016/s0040-1951(96)00192-8

Napolitano, 2021, Fault imaging at Mt Pollino (Italy) from relative location of microearthquakes, Geophys. J. Int., 224, 637, 10.1093/gji/ggaa407

Neri, 2006, A possible seismic gap within a highly seismogenic belt crossing Calabria and eastern sicily, Italy, Bull. Seismol. Soc. Am., 96, 1321, 10.1785/0120050170

Neri, 2012, How lithospheric subduction changes along the Calabrian arc in southern Italy: Geophysical evidences, Int. J. Earth Sci., 101, 1949, 10.1007/s00531-012-0762-7

Neri, 2020, Major earthquakes of southern Calabria, Italy, into the regional geodynamic context, Front. Earth Sci., 8, 579846, 10.3389/feart.2020.579846

Neri, 2009, Subduction beneath southern Italy close the ending: Results from seismic tomography, Seismol. Res. Lett., 80, 63, 10.1785/gssrl.80.1.63

Newell, 2008, Aqueous and isotope geochemistry of mineral springs along the southern margin of the Tibetan plateau: Implications for fluid sources and regional degassing of CO2, Geochem. Geophys. Geosyst., 9, Q08014, 10.1029/2008GC002021

Nocquet, 2012, Present-day kinematics of the mediterranean: A comprehensive overview of GPS results, Tectonophysics, 579, 220, 10.1016/j.tecto.2012.03.037

O'Nions, 1988, Helium, volatile fluxes and the development of continental crust, Earth Planet. Sci. Lett., 90, 331, 10.1016/0012-821X(88)90134-3

Ogniben, 1969, Schema introduttivo alla geologia del confine Calabro-lucano, Mem. Soc. Geol. It, 8, 453

Ortolano, 2020, Tectono-metamorphic evolution of the Calabria continental lower crust: The case of the Sila Piccola Massif, Int. J. Earth Sci., 109, 1295, 10.1007/s00531-020-01873-1

Ozima, 2002, Noble gas geochemistry, 286

Parkhurst, 1999, User's guide to PHREEQC a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations (Version 2). Technical Report 99-4259. U. S. Geological Survey, USA

Pastori, 2021, The 2011–2014 Pollino seismic swarm: Complex fault systems imaged by 1D refined location and shear wave splitting analysis at the apennines–Calabrian arc boundary, Front. Earth Sci., 9, 618293, 10.3389/feart.2021.618293

Paternoster, 2021, Natural hexavalent chromium in the Pollino massif groundwater (southern apennines, Italy): Occurrence, geochemistry and preliminary remediation tests by means of innovative adsorbent nanomaterials, Bull. Environ. Contam. Toxicol., 106, 421, 10.1007/s00128-020-02898-7

Perrier, 2009, A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal, Earth Planet. Sci. Lett., 278, 198, 10.1016/j.epsl.2008.12.008

Piana Agostinetti, 2009, Imaging the subducted slab under the Calabrian Arc, Italy, from receiver function analysis, Lithosphere, 1, 131, 10.1130/l49.1

Piccarreta, 1981, Deep-rooted overthrusting and blueschistic metamorphism in compressive continental margins. An example from Calabria (Southern Italy), Geol. Mag., 118, 539, 10.1017/s0016756800032908

Pitcairn, 2006, Sources of metals and fluids in orogenic gold deposits: Insights from the otago and alpine schists, New Zealand, Econ. Geol., 101, 1525, 10.2113/gsecongeo.101.8.1525

Randazzo, 2021, Active degassing of deeply sourced fluids in central Europe: New evidences from a geochemical study in Serbia, Geochem. Geophys. Geosyst., 22, e2021GC010017, 10.1029/2021GC010017

Rizzo, 2019, Geochemistry of CO2-rich gases venting from submarine volcanism: The case of kolumbo (hellenic volcanic arc, Greece), Front. Earth Sci., 7, 1, 10.3389/feart.2019.00060

Rolfo, 2015, Metamorphic CO2 production in calc-silicate rocks from the eastern Himalaya, Italian Journal of Geosciences, 136, 28, 10.3301/IJG.36

Rossetti, 2001, Alpine structural and metamorphic signature of the Sila piccola massif nappe stack (Calabria, Italy): Insights for the tectonic evolution of the Calabrian arc, Tectonics, 20, 112, 10.1029/2000tc900027

Rossetti, 2004, Alpine orogenic P-T-t-deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): The nappe edifice of north Calabria revised with insights on the Tyrrhenian-Apennine system formation, Tectonics, 23, 1, 10.1029/2003tc001560

Rovida, 2016, CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia

Catalogo parametrico dei terremoti Italiani (CPTI15), versione 2.0 (Rome: Istituto Nazionale di Geofisica e Vulcanologia (INGV)) RovidaA. LocatiM. CamassiR. LolliB. GasperiniP. 2019

Rovida, 2020, The Italian earthquake catalogue CPTI15, Bull. Earthq. Eng., 18, 2953, 10.1007/s10518-020-00818-y

Sano, 1995, Origin of carbon in fumarolic gas from island arcs, Chem. Geol., 119, 265, 10.1016/0009-2541(94)00097-R

Sano, 1985, Areal distribution of ratios in the Tohoku district, Northeastern Japan, Chem. Geol. Isot. Geosci. Sect., 52, 1, 10.1016/0168-9622(85)90004-1

Sano, 1997, Secular variations of helium and carbon isotopes at Galeras volcano, Colombia, J. Volcanol. Geotherm. Res., 77, 255, 10.1016/S0377-0273(96)00098-4

Scarfì, 2018, Slab narrowing in the central mediterranean: The calabro-ionian subduction zone as imaged by high resolution seismic tomography, Sci. Rep., 8, 5178, 10.1038/s41598-018-23543-8

Schenk, 1981, Synchronous uplift of the lower crust of the Ivrea Zone and of southern Calabria and its possible consequences for the Hercynian orogeny in southern Europe, Earth Planet. Sci. Lett., 56, 305, 10.1016/0012-821x(81)90136-9

Schenk, 1980, U-Pb and Rb-Sr radiometric dates and their correlation with metamorphic events in the granulite facies basement of the Serre, southern Calabria (Italy), Contr. Mineral. Pet., 73, 23, 10.1007/bf00376258

Shimabukuro, 2012, Cold and old: The rock record of subduction initiation beneath a continental margin, Calabria, southern Italy, Lithosphere, 4, 524, 10.1130/l222.1

Sizova, 2019, Late orogenic heating of (ultra)high pressure rocks: Slab rollback vs. slab breakoff, Geosciences, 9, 499, 10.3390/geosciences9120499

Skelton, 2011, Flux rates for water and carbon during greenschist facies metamorphism: Geology, Geology, 39, 43, 10.1130/G31328.1

Sketsiou, 2021, 3-D attenuation image of fluid storage and tectonic interactions across the Pollino fault network, Geophys. J. Int., 226, 536, 10.1093/gji/ggab109

Spakman, 2004, A tomographic view on western Mediterranean geodynamics, the TRANSMED Atlas. The Mediterranean region from crust to mantle, 31, 10.1007/978-3-642-18919-7_2

Stampfli, 2002, A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons, Earth Planet. Sci. Lett., 196, 17, 10.1016/s0012-821x(01)00588-x

Tamburello, 2018, Global-scale control of extensional tectonics on CO2 Earth degassing, Nat. Commun., 9, 4608, 10.1038/s41467-018-07087-z

Tansi, 2005, Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: the South-Eastern crati graben (northern Calabria, Italy), Tectonophysics, 396, 181, 10.1016/j.tecto.2004.11.008

Thomson, 1998, Assessing the nature of tectonic contacts using fission-track thermochronology: An example from the Calabrian arc, southern Italy, Terra nova., 10, 32, 10.1046/j.1365-3121.1998.00165.x

Thomson, 1994, Fission track analysis of the crystalline basement rocks of the Calabrian Arc, southern Italy: Evidence of Oligo-Miocene late orogenic extension and erosion, Tectonophysics, 238, 331, 10.1016/0040-1951(94)90063-9

Tiberti, 2017, Understanding seismogenic processes in the Southern Calabrian Arc:A geodynamic perspective, Italian J. Geosciences, 136, 365, 10.3301/ijg.2016.12

Tortorici, 2003, Fault activity and marine terracing in the capo vaticano area (southern Calabria) during the middle-late quaternary. Quatern. Int., 269–278

Tortorici, , - lineamenti geologico strutturalidell’Arco calabro-peloritano. Rend. Soc. It. Mineral, Pet., 38, 927

Tortorici, , -Analisi delle Deform. fragili dei sedimenti postorogeni della Calabr. Settentrionale.Boll. Soc. Geol.It., 100, 291

Tortorici, 1981, Analisi delle deformazioni fragili postorogene della Calabria settentrionale, Boll. Soc. Geol. It, 100, 291

Tortorici, 1995, Recent and active tectonics in the Calabrian arc (southern Italy), Tectonophysics, 243, 37, 10.1016/0040-1951(94)00190-k

Tursi, 2021, What can high-P sheared orthogneisses tell us? An example from the curinga–girifalco line (Calabria, southern Italy), J. Metamorph. Geol., 39, 919, 10.1111/jmg.12596

Tursi, 2020, Cold subduction zone in northern Calabria (Italy) revealed by lawsonite–clinopyroxene blueschists, J. Metamorph. Geol., 38, 451, 10.1111/jmg.12528

Stable isotope geochemistry ValleyJ. W. ColeD. R. 2019

Vespasiano, 2014, Chemical and isotopic characteristics of the warm and cold waters of the Luigiane Spa near Guardia Piemontese (Calabria, Italy) in a complex faulted geological framework, Appl. Geochem., 41, 73, 10.1016/j.apgeochem.2013.11.014

Vespasiano, , The small spring method (SSM) for the definition of stable isotope - elevation relationships in northern Calabria (southern Italy), Appl. Geochem., 63, 333, 10.1016/j.apgeochem.2015.10.001

Vespasiano, , Preliminary geochemical and geological characterization of the thermal site of Spezzano Albanese (Calabria, South Italy), Rend. Online Soc. Geol. It, 33, 108, 10.3301/rol.2015.26

Vespasiano, , Preliminary geochemical characterization of the warm waters of the Grotta delle Ninfe near Cerchiara di Calabria (South Italy), Rend. Online Soc. Geol. It, 39, 130

Vespasiano, 2016, Preliminary geochemical characterization of the thermal waters of Caronte SPA springs (Calabria, South Italy), Rend. Online Soc. Geol. It, 39, 138, 10.3301/rol.2015.159

Vespasiano, 2021, Chemical, isotopic and geotectonic relations of the warm and cold waters of the Cotronei (Ponte Coniglio), Bruciarello and Repole thermal areas, (Calabria - southern Italy), Geothermics, 96, 102228, 10.1016/j.geothermics.2021.102228

Vespasiano, 2012, Preliminary hydrogeochemical and geological characterization of the thermal aquifer in the Guardia Piemontese area (Calabria, south Italy), Rend. Online Soc. Geol. It, 21, 841

Vitale, 2019, The Ligurian oceanic successions in southern Italy: The key to decrypting the first orogenic stages of the southern Apennines- Calabria chain system, Tectonophysics, 750, 243, 10.1016/j.tecto.2018.11.010

Vogel, 1970, Isotopic fractionation between gaseous and dissolved carbon dioxide, Z. Phys., 230, 225, 10.1007/bf01394688

Von Blanckenburg, 1995, Slab breakoff – A model for syncollisional magmatism and tectonics in the alps, Tectonics, 14, 120, 10.1029/94tc02051

Westaway, 1993, Quaternary uplift of southern Italy, J. Geophys. Res., 98, 21741, 10.1029/93jb01566

Zanettin Lorenzoni, 1982, Relationships of main structural elements of Calabria (southern Italy), njgpm., 7, 403, 10.1127/njgpm/1982/1982/403

Zarlenga, 2011, Le possibilit`a di utilizzo della risorsa geotermica a Bassa e media entalpia per la sostenibilit`a della produzione energetica, Energ. Ambiente Innov., 3, 31

Zeck, 1990, The exhumation and preservation of deep continental crust in the northwestern Calabrian arc, southern Italy, 277

Zhang, 2021, Metamorphic CO2 emissions from the southern Yadong-Gulu rift, Tibetan Plateau: Insights into deep carbon cycle in the India-Asia continental collision zone, Chem. Geol., 584, 120534, 10.1016/j.chemgeo.2021.120534