Activation of peat soil carbon and production of carbon nanostructures using a flying jet cold plasma torch

Springer Science and Business Media LLC - Tập 17 Số 3 - Trang 1383-1390 - 2019
Wameath S. Abdul‐Majeed1, Khamis Al-Riyami2
1Department of Chemical and Petrochemical Engineering, University of Nizwa, Nizwa, Oman
2Daris Centre for Scientific Research and Technological Development, University of Nizwa, Nizwa, Oman

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdul-Majeed WS (2018) Flying jet plasma: a logistic powerful catalyzing agent for chemical and biological processes. Inform Mag AOCS 29(10):18–20. https://doi.org/10.21767/2394-9988-c1-002

Abdul-Majeed WS, Karunakaran E, Biccs CA, Zimmerman WB (2015) Development of wastewater treatment system based on cascade dielectric barrier discharge plasma atomizers. J Environ Sci Health Part A 50:1249–1258. https://doi.org/10.1080/10934529.2015.1055150

Abdul-Majeed WS, Al-Thani GS, Al-Sabahi JN (2016) Application of flying jet plasma for production of biodiesel fuel from wasted vegetable oil. Plasma Chem Plasma Process 36:1517–1531. https://doi.org/10.1007/s11090-016-9735-0

Abdul-Majeed WS, Al-Handhali I, Al-Yaquobi S, Al-Riyami K (2017) Application of novel polymeric surface remediation technique based on flying jet plasma torch. Ind Eng Chem Res 56:11352–11358. https://doi.org/10.1021/acs.iecr.7b02729

Abraham J, Vasu K, Williams C, Gopinadhan K, Su Y, Cherian C (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12:546–550. https://doi.org/10.1038/nnano.2017.21

Amirov R, Isakaev E, Shavelkina M, Shatalova T (2014) Synthesis of carbon nanotubes by high current divergent anode-channel plasma torch. J Phys Conf Ser 550:012023. https://doi.org/10.1088/1742-6596/550/1/012023

Cochran WG, Cox GM (1992) Experimental designs, 2nd edn. Wiley, New York. ISBN-10 0471545678

Franklin R (1951) Crystalline growth in graphitizing and non-graphitizing carbons. Proc R Soc Lond Ser A Math Phys Sci. https://doi.org/10.1098/rspa.1951.0197

Ge S, Liu Z, Furuta Y, Peng W (2017) Characteristics of activated carbon remove sulfur particles against smog. Saudi J Biol Sci 24:1370–1374. https://doi.org/10.1016/j.sjbs.2016.12.016

Harris P, Liu Z, Suenaga K (2008) Imaging the atomic structure of activated carbon. J Phys Condens Matter 20:362201. https://doi.org/10.1088/0953-8984/20/36/362201

Hebbar R, Isloor A, Asiri A (2017) Carbon nanotube-and graphene-based advanced membrane materials for desalination. Environ Chem Lett 15:643–671. https://doi.org/10.1007/s10311-017-0653-z

Iijima S (1991) Helicl microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

Lee D, Seo J (2010) Preparation of carbon nanotubes from graphite powder at room temperature. Cornell University. http://arxiv.org/abs/1007.1062v4

Luo S, Gao L, Wei Z, Spinney R, Dionysiou D, Hu W, Chai L, Xiao R (2018) Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates. Water Res 137:233–241. https://doi.org/10.1016/j.watres.2018.03.002

Ma W, Kugler E, Wright J, Dadyburjor D (2006) Mo–Fe catalysts supported on activated carbon for synthesis of liquid fuels by the Fischer − Tropsch process: effect of mo addition on reducibility, activity, and hydrocarbon selectivity. Energy Fuels 20:2299–2307. https://doi.org/10.1021/ef0602372

Mubarak N, Abdullah E, Jayakumar N, Sahu J (2014) An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 20:1186–1197. https://doi.org/10.1016/j.jiec.2013.09.001

Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis-review. J Mater Chem 21:15872–15884. https://doi.org/10.1039/c1jm12254a

Rakov E (2000) Methods for preparation of carbon nanotubes. Russ Chem Rev 69:35–52. https://doi.org/10.1070/rc2000v069n01abeh000531

Rakov E (2001) The chemistry and application of carbon nanotubes. Russ Chem Rev 70:827–863. https://doi.org/10.1070/rc2001v070n10abeh000660

Shen J, Huang G, An C, Xin X, Huang C, Rosendahl S (2017) Removal of tetrabromobisphenol a by adsorption on pinecone-derived activated charcoals: synchrotron FTIR, kinetics and surface functionality analyses. Bioresour Technol 247:812–820. https://doi.org/10.1016/j.biortech.2017.09.177

Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy J (2010) Synthesis methods of carbon nanotubes and related materials. Materials 3:3092–3140. https://doi.org/10.3390/ma3053092

Tan C, Tan K, Ong Y, Mohamed A, Zein S, Tan S (2012) Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10:265–273. https://doi.org/10.1007/s10311-012-0356-4

Wang Z, Meng X, Li J, Du X, Li S, Jiang Z, Tang T (2009) A simple method for preparing carbon nanotubes/clay hybrids in water. J Phys Chem C 113:8058–8064. https://doi.org/10.1021/jp811260p

Wildgoose G, Banks C, Compton R (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193. https://doi.org/10.1002/smll.200500324

Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:1–26. https://doi.org/10.1186/s40538-016-0070-8