Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): Interaction with other regulatory ligands

Progress in Biophysics and Molecular Biology - Tập 94 - Trang 320-335 - 2007
Lai-Hua Xie1, Scott A. John1, Bernard Ribalet1, James N. Weiss1
1Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA

Tài liệu tham khảo

Amoroso, 1990, Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels, Science, 247, 852, 10.1126/science.2305257 Arbuzova, 2000, Fluorescently labeled neomycin as a probe of phosphatidylinositol-4, 5-bisphosphate in membranes, Biochim. Biophys. Acta., 1464, 35, 10.1016/S0005-2736(99)00243-6 Ashcroft, 1988, Adenosine 5’-triphosphate-sensitive potassium channels, Annu. Rev. Neurosci., 11, 97, 10.1146/annurev.ne.11.030188.000525 Ashcroft, 1998, Exciting times for PIP2, Science, 282, 1059, 10.1126/science.282.5391.1059 Babenko, 2005, K(ATP) channels “vingt ans apres”: ATG to PDB to Mechanism, J. Mol. Cell. Cardiol., 39, 79, 10.1016/j.yjmcc.2004.12.004 Babenko, 1998, A view of sur/KIR6.X, KATP channels, Annu. Rev. Physiol., 60, 667, 10.1146/annurev.physiol.60.1.667 Babenko, 2002, SUR-dependent modulation of KATP channels by an N-terminal KIR6.2 peptide. Defining intersubunit gating interactions, J. Biol. Chem., 277, 43997, 10.1074/jbc.M208085200 Baukrowitz, 1998, PIP2 and PIP as determinants for ATP inhibition of KATP channels, Science, 282, 1141, 10.1126/science.282.5391.1141 Brayden, 2002, Functional roles of KATP channels in vascular smooth muscle, Clin. Exp. Pharmacol. Physiol., 29, 312, 10.1046/j.1440-1681.2002.03650.x Chan, 2003, N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits, Embo. J., 22, 3833, 10.1093/emboj/cdg376 Chang, 2003, The effects of spermine on the accessibility of residues in the M2 segment of Kir2.1 channels expressed in Xenopus oocytes, J. Physiol., 553, 101, 10.1113/jphysiol.2003.052845 Cho, 2001, Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in alpha(1)-adrenergic pathway via the modulation of acetylcholine- activated K(+) channels in mouse atrial myocytes, J. Biol. Chem., 276, 159, 10.1074/jbc.M004826200 Cho, 2005, Receptor-induced depletion of phosphatidylinositol 4,5-bisphosphate inhibits inwardly rectifying K+ channels in a receptor-specific manner, Proc. Natl. Acad. Sci. USA, 102, 4643, 10.1073/pnas.0408844102 Clement, 1997, Association and stoichiometry of K(ATP) channel subunits, Neuron, 18, 827, 10.1016/S0896-6273(00)80321-9 Dascal, 1993, Atrial G protein-activated K+ channel: expression cloning and molecular properties, Proc. Natl. Acad. Sci. USA, 90, 10235, 10.1073/pnas.90.21.10235 Dhamoon, 2004, Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current, Circ. Res., 94, 1332, 10.1161/01.RES.0000128408.66946.67 Doupnik, 1996, Time resolved kinetics of direct G beta 1 gamma 2 interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits, Neuropharmacology, 35, 923, 10.1016/0028-3908(96)00125-6 Doyle, 1998, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 280, 69, 10.1126/science.280.5360.69 Du, 2004, Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators, J. Biol. Chem., 279, 37271, 10.1074/jbc.M403413200 Fakler, 1995, Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine, Cell, 80, 149, 10.1016/0092-8674(95)90459-X Fan, 1997, Anionic phospholipids activate ATP-sensitive potassium channels, J. Biol. Chem., 272, 5388, 10.1074/jbc.272.9.5388 Fan, 2003, Phosphatidic acid stimulates cardiac KATP channels like phosphatidylinositols, but with novel gating kinetics, Am. J. Physiol. Cell Physiol., 284, C94, 10.1152/ajpcell.00255.2002 Ficker, 1994, Spermine and spermidine as gating molecules for inward rectifier K+ channels, Science, 266, 1068, 10.1126/science.7973666 Finley, 2004, BetaL–betaM loop in the C-terminal domain of G protein-activated inwardly rectifying K(+) channels is important for G(betagamma) subunit activation, J. Physiol., 555, 643, 10.1113/jphysiol.2003.056101 Fox, 2003, Acyl coenzyme A esters differentially activate cardiac and beta-cell adenosine triphosphate-sensitive potassium channels in a side-chain length-specific manner, Metabolism, 52, 1313, 10.1016/S0026-0495(03)00199-9 Fujiwara, 2006, Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1, J. Gen. Physiol., 127, 401, 10.1085/jgp.200509434 Giebisch, 1998, Renal potassium transport: mechanisms and regulation, Am. J. Physiol., 274, F817 Gribble, 1997, The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide, Embo. J., 16, 1145, 10.1093/emboj/16.6.1145 Guo, 2003, Interaction Mechanisms between Polyamines and IRK1 Inward Rectifier K+ Channels, J. Gen. Physiol., 122, 485, 10.1085/jgp.200308890 Haruna, 2002, Alpha1-adrenoceptor-mediated breakdown of phosphatidylinositol 4,5- bisphosphate inhibits pinacidil-activated ATP-sensitive K+ currents in rat ventricular myocytes, Circ. Res., 91, 232, 10.1161/01.RES.0000029971.60214.49 He, 1999, Identification of a potassium channel site that interacts with G protein betagamma subunits to mediate agonist-induced signaling, J. Biol. Chem., 274, 12517, 10.1074/jbc.274.18.12517 He, 2002, Identification of critical residues controlling G protein-gated inwardly rectifying K(+) channel activity through interactions with the beta gamma subunits of G proteins, J. Biol. Chem., 277, 6088, 10.1074/jbc.M104851200 Hebert, 1995, An ATP-regulated, inwardly rectifying potassium channel from rat kidney (ROMK), Kidney Int., 48, 1010, 10.1038/ki.1995.383 Hebert, 2005, Molecular diversity and regulation of renal potassium channels, Physiol. Rev., 85, 319, 10.1152/physrev.00051.2003 Hilgemann, 1996, Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2, Science, 273, 956, 10.1126/science.273.5277.956 Hilgemann, D.W., Feng, S. and Nasuhoglu, C., 2001. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE 2001, RE19. Ho, 1999, Molecular determinants for sodium-dependent activation of G protein-gated K+ channels, J. Biol. Chem., 274, 8639, 10.1074/jbc.274.13.8639 Ho, 1993, Cloning and expression of an inwardly rectifying ATP-regulated potassium channel, Nature, 362, 31, 10.1038/362031a0 Huang, 1995, Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation, Neuron, 15, 1133, 10.1016/0896-6273(95)90101-9 Huang, 1997, Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels, FEBS Lett., 405, 291, 10.1016/S0014-5793(97)00197-X Huang, 1998, Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma, Nature, 391, 803, 10.1038/35882 Inagaki, 1995, Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor, Science, 270, 1166, 10.1126/science.270.5239.1166 Inanobe, 1995, G beta gamma directly binds to the carboxyl terminus of the G protein-gated muscarinic K+ channel, GIRK1, Biochem. Biophys. Res. Commun., 212, 1022, 10.1006/bbrc.1995.2072 Ivanina, 2003, Mapping the Gbetagamma-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K+ channel, J. Biol. Chem., 278, 29174, 10.1074/jbc.M304518200 Jenkinson, 1994, Disruption by lithium of phosphatidylinositol-4,5-bisphosphate supply and inositol-1,4,5-trisphosphate generation in Chinese hamster ovary cells expressing human recombinant m1 muscarinic receptors, Mol. Pharmacol., 46, 1138 John, 1998, The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6.2 K+ channels linked to the green fluorescent protein in human embryonic kidney cells (HEK 293), J. Physiol., 510, 333, 10.1111/j.1469-7793.1998.333bk.x John, 2004, Mechanism of inward rectification in kir channels, J. Gen. Physiol., 123, 623, 10.1085/jgp.200409017 John, 2005, ATP sensitivity of ATP-sensitive K+ channels: role of the gamma phosphate group of ATP and the R50 residue of mouse Kir6.2, J. Physiol., 568, 931, 10.1113/jphysiol.2005.095638 Koster, 1999, Sulfonylurea and K(+)-channel opener sensitivity of K(ATP) channels. Functional coupling of Kir6.2 and SUR1 subunits, J. Gen. Physiol., 114, 203, 10.1085/jgp.114.2.203 Krapivinsky, 1995, The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins, Nature, 374, 135, 10.1038/374135a0 Krapivinsky, 1998, Gbeta binding to GIRK4 subunit is critical for G protein-gated K+ channel activation, J. Biol. Chem., 273, 16946, 10.1074/jbc.273.27.16946 Krapivinsky, 1998, A novel inward rectifier K+ channel with unique pore properties, Neuron, 20, 995, 10.1016/S0896-6273(00)80480-8 Krauter, 2001, Phospholipids as modulators of K(ATP) channels: distinct mechanisms for control of sensitivity to sulphonylureas, K(+) channel openers, and ATP, Mol. Pharmacol., 59, 1086, 10.1124/mol.59.5.1086 Kubo, 1996, Identification of domains of the cardiac inward rectifying K+ channel, CIR, involved in the heteromultimer formation and in the G-protein gating, Biochem. Biophys. Res. Commun., 227, 240, 10.1006/bbrc.1996.1496 Kubo, 2001, Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel, J. Physiol., 531, 645, 10.1111/j.1469-7793.2001.0645h.x Kubo, 1993, Primary structure and functional expression of a mouse inward rectifier potassium channel, Nature, 362, 127, 10.1038/362127a0 Kubo, 1993, Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel, Nature, 364, 802, 10.1038/364802a0 Kunkel, 1995, Identification of domains conferring G protein regulation on inward rectifier potassium channels, Cell, 83, 443, 10.1016/0092-8674(95)90122-1 Kuo, 2003, Crystal structure of the potassium channel KirBac1.1 in the closed state, Science, 300, 1922, 10.1126/science.1085028 Kurata, 2004, Molecular basis of inward rectification: polyamine interaction sites located by combined channel and ligand mutagenesis, J. Gen. Physiol., 124, 541, 10.1085/jgp.200409159 Leng, Q., Macgregor, G.G., Dong, K., Giebisch, G. and Hebert, S.C., 2006. Subunit-subunit interactions are critical for proton sensitivity of ROMK: Evidence in support of an intermolecular gating mechanism. Proc. Natl. Acad. Sci. USA. Leung, 2000, Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms, J. Biol. Chem., 275, 10182, 10.1074/jbc.275.14.10182 Levitan, 1994, Modulation of ion channels by protein phosphorylation and dephosphorylation, Annu. Rev. Physiol., 56, 193, 10.1146/annurev.ph.56.030194.001205 Lin, 2003, Stabilization of the activity of ATP-sensitive potassium channels by ion pairs formed between adjacent Kir6.2 subunits, J. Gen. Physiol., 122, 225, 10.1085/jgp.200308822 Liou, 1999, Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism, Proc. Natl. Acad. Sci. USA, 96, 5820, 10.1073/pnas.96.10.5820 Liss, 2001, Molecular physiology of neuronal K-ATP channels (review), Mol. Membr. Biol., 18, 117, 10.1080/09687680110047373 Liu, 2001, Long-chain acyl-coenzyme A esters and fatty acids directly link metabolism to K(ATP) channels in the heart, Circ. Res., 88, 918, 10.1161/hh0901.089881 Logothetis, 1999, Gating of G protein-sensitive inwardly rectifying K+ channels through phosphatidylinositol 4,5-bisphosphate, J. Physiol., 520, 630, 10.1111/j.1469-7793.1999.00630.x Lopatin, 1994, Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification, Nature, 372, 366, 10.1038/372366a0 Lopatin, 1995, The mechanism of inward rectification of potassium channels: “long-pore plugging” by cytoplasmic polyamines, J. Gen. Physiol., 106, 923, 10.1085/jgp.106.5.923 Lopes, 2002, Alterations in conserved Kir channel–PIP2 interactions underlie channelopathies, Neuron, 34, 933, 10.1016/S0896-6273(02)00725-0 Lu, 1994, Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel, Nature, 371, 243, 10.1038/371243a0 MacGregor, 2002, Nucleotides and phospholipids compete for binding to the C terminus of KATP channels, Proc. Natl. Acad. Sci. USA, 99, 2726, 10.1073/pnas.042688899 Nasuhoglu, 2002, Modulation of cardiac PIP2 by cardioactive hormones and other physiologically relevant interventions, Am. J. Physiol. Cell Physiol., 283, C223, 10.1152/ajpcell.00486.2001 Nichols, 2006, KATP channels as molecular sensors of cellular metabolism, Nature, 440, 470, 10.1038/nature04711 Nielsen, 2003, Localization and function of ATP-sensitive potassium channels in human skeletal muscle, Am. J. Physiol. Regul. Integr. Comp. Physiol., 284, R558, 10.1152/ajpregu.00303.2002 Nishida, 2002, Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution, Cell, 111, 957, 10.1016/S0092-8674(02)01227-8 Noma, 1983, ATP-regulated K+ channels in cardiac muscle, Nature, 305, 147, 10.1038/305147a0 Pegan, 2005, Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification, Nat. Neurosci., 8, 279, 10.1038/nn1411 Petit-Jacques, 1999, Synergistic activation of G protein-gated inwardly rectifying potassium channels by the betagamma subunits of G proteins and Na(+) and Mg(2+) ions, J. Gen. Physiol., 114, 673, 10.1085/jgp.114.5.673 Phillips, 2003, Ligand-induced Closure of Inward Rectifier Kir6.2 Channels Traps Spermine in the Pore, J. Gen. Physiol., 122, 795, 10.1085/jgp.200308953 Proks, 2003, The ligand-sensitive gate of a potassium channel lies close to the selectivity filter, EMBO Rep., 4, 70, 10.1038/sj.embor.embor708 Rapedius, 2005, Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels, J. Biol. Chem., 280, 30760, 10.1074/jbc.M503503200 Ribalet, 2000, Regulation of cloned ATP-sensitive K channels by phosphorylation, MgADP, and phosphatidylinositol bisphosphate (PIP(2)): a study of channel rundown and reactivation, J. Gen. Physiol., 116, 391, 10.1085/jgp.116.3.391 Ribalet, 2003, Molecular basis for kir6.2 channel inhibition by adenine nucleotides, Biophys. J., 84, 266, 10.1016/S0006-3495(03)74847-4 Ribalet, 2005, Regulation of the ATP-sensitive K channel Kir6.2 by ATP and PIP(2), J. Mol. Cell Cardiol., 39, 71, 10.1016/j.yjmcc.2004.11.018 Ribalet, 2006, ATP-sensitive K+ channels: regulation of bursting by the sulphonylurea receptor, PIP2 and regions of Kir6.2, J. Physiol., 571, 303, 10.1113/jphysiol.2005.100719 Rich, 1993, Regulation of the cystic fibrosis transmembrane conductance regulator Cl− channel by negative charge in the R domain, J. Biol. Chem., 268, 20259, 10.1016/S0021-9258(20)80723-6 Rodrigo, 2005, ATP-sensitive potassium channels, Curr. Pharm. Des., 11, 1915, 10.2174/1381612054021015 Rohacs, 1999, Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides, J. Biol. Chem., 274, 36065, 10.1074/jbc.274.51.36065 Rohacs, 2003, Specificity of activation by phosphoinositides determines lipid regulation of Kir channels, Proc. Natl. Acad. Sci. USA, 100, 745, 10.1073/pnas.0236364100 Schram, 2003, Barium block of Kir2 and human cardiac inward rectifier currents: evidence for subunit-heteromeric contribution to native currents, Cardiovasc. Res., 59, 328, 10.1016/S0008-6363(03)00366-3 Schulte, 2000, Gating of inward-rectifier K+ channels by intracellular pH, Eur. J. Biochem., 267, 5837, 10.1046/j.1432-1327.2000.01671.x Schulte, 1998, pH-dependent gating of ROMK (Kir1.1) channels involves conformational changes in both N and C termini, J. Biol. Chem., 273, 34575, 10.1074/jbc.273.51.34575 Schulze, 2003, PIP2 modulation of ATP and pH sensitivity in Kir channels:a tale of an active and a silent PIP2 site in the N-terminus, J. Biol. Chem., 4, 4 Schulze, 2003, Long-chain acyl-CoA esters and phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the same mechanism, J. Physiol., 552, 357, 10.1113/jphysiol.2003.047035 Schwappach, 2000, Molecular basis for K(ATP) assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter, Neuron, 26, 155, 10.1016/S0896-6273(00)81146-0 Shin, 2005, Mechanism of the voltage sensitivity of IRK1 inward-rectifier K+ channel block by the polyamine spermine, J. Gen. Physiol., 125, 413, 10.1085/jgp.200409242 Shyng, 1997, Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor, J. Gen. Physiol., 110, 643, 10.1085/jgp.110.6.643 Shyng, 1998, Membrane phospholipid control of nucleotide sensitivity of KATP channels, Science, 282, 1138, 10.1126/science.282.5391.1138 Shyng, 2000, Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase, Proc. Natl. Acad. Sci. USA, 97, 937, 10.1073/pnas.97.2.937 Shyng, 2000, Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels, J. Gen. Physiol., 116, 599, 10.1085/jgp.116.5.599 Slesinger, 1995, Identification of structural elements involved in G protein gating of the GIRK1 potassium channel, Neuron, 15, 1145, 10.1016/0896-6273(95)90102-7 Song, 2001, ATP modulation of ATP-sensitive potassium channel ATP sensitivity varies with the type of SUR subunit, J. Biol. Chem., 276, 7143, 10.1074/jbc.M009959200 Soom, 2001, Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels, FEBS Lett, 490, 49, 10.1016/S0014-5793(01)02136-6 Stanfield, 1994, A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1, J. Physiol., 478, 1, 10.1113/jphysiol.1994.sp020225 Suh, 2005, Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate, Curr. Opin. Neurobiol., 15, 370, 10.1016/j.conb.2005.05.005 Sui, 1998, Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates, Proc. Natl. Acad. Sci. USA, 95, 1307, 10.1073/pnas.95.3.1307 Takano, 2003, Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism, Prog. Biophys. Mol. Biol., 81, 67, 10.1016/S0079-6107(02)00048-2 Teramoto, N. (2006) Physiological Roles of ATP-sensitive K+ Channels in Smooth Muscle. J Physiol. Tucker, 1997, Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor, Nature, 387, 179, 10.1038/387179a0 van der Vusse, 1992, Fatty acid homeostasis in the normoxic and ischemic heart, Physiol. Rev., 72, 881, 10.1152/physrev.1992.72.4.881 Wible, 1994, Gating of inwardly rectifying K+ channels localized to a single negatively charged residue, Nature, 371, 246, 10.1038/371246a0 Willars, 1998, Differential regulation of muscarinic acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signaling in human neuroblastoma cells, J. Biol. Chem., 273, 5037, 10.1074/jbc.273.9.5037 Xiao, 2003, Localization of PIP2 activation gate in inward rectifier K+ channels, Nat. Neurosci., 6, 811, 10.1038/nn1090 Xie, 1999, Phospholipase C-linked receptors regulate the ATP-sensitive potassium channel by means of phosphatidylinositol 4,5-bisphosphate metabolism, Proc. Natl. Acad. Sci. USA, 96, 15292, 10.1073/pnas.96.26.15292 Xie, 2002, Spermine block of the strong inward rectifier potassium channel Kir2.1: dual roles of surface charge screening and pore block, J. Gen. Physiol., 120, 53, 10.1085/jgp.20028576 Xie, 2003, Inward rectification by polyamines in mouse Kir2.1 channels: synergy between blocking components, J. Physiol., 550, 67, 10.1113/jphysiol.2003.043117 Xie, 2005, Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels, J. Gen. Physiol., 126, 541, 10.1085/jgp.200509380 Yang, 1995, Determination of the subunit stoichiometry of an inwardly rectifying potassium channel, Neuron, 15, 1441, 10.1016/0896-6273(95)90021-7 Yang, 2000, Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH, J. Gen. Physiol., 116, 33, 10.1085/jgp.116.1.33 Zeng, 2003, Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism, J. Biol. Chem., 278, 16852, 10.1074/jbc.M300619200 Zerangue, 1999, A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels, Neuron, 22, 537, 10.1016/S0896-6273(00)80708-4 Zhang, 1999, Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions, Nat. Cell. Biol., 1, 183, 10.1038/11103