Activation of cell membrane potassium conductance by mercury in cultured renal epitheloid (MDCK) cells

Journal of Cellular Physiology - Tập 146 Số 1 - Trang 25-33 - 1991
A. Jungwirth1, Markus Ritter, Markus Paulmichl, Florian Läng
1Institute for Physiology, University of Innsbruck, Austria.

Tóm tắt

AbstractTo elucidate mechanisms of mercury toxicity, the cell membrane potential has been determined continuously in cultured kidney (MDCK)‐cells during reversible application of mercury ions to extracellular perfusate. Exposure of the cells to 1μM mercury ions is followed by rapid, sustained, and slowly reversible hyperpolarization of the cell membrane, increase of cell membrane potassium selectivity, and decrease of cell membrane resistance. Thus, mercury ions enhance the potassium conductance of the cell membrane. Half maximal hyperpolarizing effect is elicited by ≈0.2 μM. Higher concentrations of mercury ions (> 10 μM) eventually depolarize the cell membrane. At extracellular calcium activity reduced to less than 0.1 μM, 1 μM mercury ions still leads to a sustained hyperpolarization and increase of potassium selectivity of the cell membrane. As evident from fluorescence measurements, 10 μM, but not 1 μM mercury ions leads to a rapid increase of intracellular calcium activity. Pretreatment of the cells with either pertussis toxin or cholera toxin does not blunt the hyperpolarizing effect of mercury ions. In conclusion, mercury ions activate the potassium conductance by a mechanism independent of increase of intracellular calcium activity and of cholera toxin‐or pertussis toxin‐sensitive G‐proteins. This activation of potassium conductance may account for early effects of mercury intoxication, such as kaliuresis.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.80.6.1526

Adunyah S. E., 1986, Effects of sulfhydryl reagents and other inhibitors on Ca2+ transport and inositol trisphosphate‐induced Ca2+ release from human platelet membranes, J. Biol. Chem., 261, 13071, 10.1016/S0021-9258(18)69272-5

10.1007/BF01870473

10.1016/0014-5793(85)80033-8

10.1177/074823378800400108

10.1172/JCI105570

10.1007/BF02889030

Benndorf K., 1988, Different blocking effects of Cd++ and Hg++ on the early outward current in myocardial mouse cells, Gen. Physiol. Biophys., 7, 345

10.1016/0003-9861(83)90164-9

10.1007/BF01869613

10.1016/0005-2736(81)90432-6

10.1016/0005-2736(82)90243-7

10.1007/BF01869120

Chavez E., 1988, Mitochondrial calcium release as induced by Hg2+, J. Biol. Chem., 263, 3582, 10.1016/S0021-9258(18)68964-1

10.1146/annurev.pa.12.040172.002111

10.1021/bi00892a002

Cooper G. P., 1983, Influence of heavy metals on synaptic transmission: A review, Neurotoxicology, 4, 69

10.1159/000179922

Flamenbaum W., 1973, Effect of potassium on the renin‐angiotensin system and HgCl2‐induced acute renal failure, Am. J. Physiol., 224, 305, 10.1152/ajplegacy.1973.224.2.305

10.1007/BF01871397

10.1152/ajpcell.1989.256.5.C1016

10.1080/15287398609530908

10.1085/jgp.79.6.965

10.1113/jphysiol.1979.sp013012

Gray J. A., 1987, Pharmacologic probing of mercuric chloride‐induced renal dysfunction in the neonatal rat, J. Pharmacol. Exp. Ther., 242, 212

10.1016/S0021-9258(19)83641-4

Gstraunthaler G., 1988, Epithelial cells in tissue culture, Renal Physiol., 11, 1

10.1016/0006-2952(83)90404-5

10.1152/ajpcell.1980.238.1.C1

Humes H. D., 1986, Role of calcium in pathogenesis of acute renal failure, Am. J. Physiol., 250, F579

10.1038/ki.1977.88

10.1016/0041-008X(83)90163-1

10.1007/BF00583597

10.1007/BF00581160

Lang F., 1990, Ion channels in Madin‐Darby canine kidney cells, Renal Physiol. Biochem., 13, 82

Madin S. H., 1958, As catalogued in: American type culture collection catalogue of strains, 2, 574

McRoberts J. A., 1982, Furosemide‐sensitive salt transport in the Madin‐Darby canine kidney cell line, J. Biol. Chem., 257, 2260, 10.1016/S0021-9258(18)34915-9

10.1073/pnas.73.4.1212

10.1016/0006-8993(83)90893-4

Moolenaar W. H., 1984, Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts, J. Biol. Chem., 259, 8066, 10.1016/S0021-9258(17)39690-4

10.1038/304633a0

Palmer J. W., 1981, The control of Ca2+ release from heart mitochondria, J. Biol. Chem., 256, 6742, 10.1016/S0021-9258(19)69054-X

Passow H., 1961, The general pharmacology of the heavy metals, Pharmacol. Rev., 13, 185

10.1016/S0006-291X(88)80751-4

10.1007/BF00584529

10.1016/0014-5793(88)80094-2

10.1007/978-3-642-68287-2_1

10.1042/bj1740613

Rindler M. J., 1981, Evidence for Na+/H+ antiport in cultured dog kidney cells (MDCK), J. Biol. Chem., 256, 10820, 10.1016/S0021-9258(19)68516-9

10.1083/jcb.81.3.635

Rindler M. J., 1979, Uptake of22Na+ by cultured dog kidney cells (MDCK), J. Biol. Chem., 254, 11431, 10.1016/S0021-9258(19)86503-1

10.1007/BF00231303

10.1016/0005-2736(81)90329-1

Simmons N. L., 1982, Cultured monolayers of MDCK cells: A novel model system for the study of epithelial development and function, J. Pharmacol., 13, 287

10.1016/0167-4889(87)90199-6

Thiel G., 1976, Protection of rat kidneys against HgCl2‐induced acute renal failure by induction of high urine flow without renin suppression, Kidney Int., 10, 5191

10.1083/jcb.94.2.325

10.1002/jcp.1041000210

10.1016/S0272-6386(86)80099-3

10.1016/0014-4800(83)90040-0