Activation of Bicyclic Nitro-drugs by a Novel Nitroreductase (NTR2) in Leishmania
Tóm tắt
Từ khóa
Tài liệu tham khảo
J Alvar, 2012, Leishmaniasis worldwide and global estimates of its incidence, PLoS One, 7, e35671, 10.1371/journal.pone.0035671
K Ritmeijer, 2003, Médecins Sans Frontières interventions against kala-azar in the Sudan, 1989–2003, Trans R Soc Trop Med Hyg, 97, 609, 10.1016/S0035-9203(03)80047-0
SL Croft, 2006, Drug Resistance in Leishmaniasis, Clin Microbiol Rev, 19, 111, 10.1128/CMR.19.1.111-126.2006
M Mueller, 2007, Unresponsiveness to AmBisome in some Sudanese patients with kala-azar, Trans R Soc Trop Med Hyg, 101, 19, 10.1016/j.trstmh.2006.02.005
ML den Boer, 2009, Developments in the treatment of visceral leishmaniasis, Expert Opin Emerg Drugs, 14, 395, 10.1517/14728210903153862
G Priotto, 2009, Nifurtimox-eflornithine combination therapy for second-stage African <italic>Trypanosoma brucei gambiense</italic> trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial, Lancet, 374, 56, 10.1016/S0140-6736(09)61117-X
S Wyllie, 2012, The anti-trypanosome drug fexinidazole shows potential for treating visceral leishmaniasis, Sci Transl Med, 4
MT Bahia, 2012, Fexinidazole: a potential new drug candidate for Chagas disease, PLoS Negl Trop Dis, 6, e1870, 10.1371/journal.pntd.0001870
R Mukkavilli, 2014, <italic>In vitro</italic> metabolism, disposition, preclinical pharmacokinetics and prediction of human pharmacokinetics of DNDI-VL-2098, a potential oral treatment for Visceral Leishmaniasis, Eur J Pharm Sci, 65, 147, 10.1016/j.ejps.2014.09.006
BS Hall, 2011, Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites, J Biol Chem, 286, 13088, 10.1074/jbc.M111.230847
AY Sokolova, 2010, Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis, Antimicrob Agents Chemother, 54, 2893, 10.1128/AAC.00332-10
S Wyllie, 2013, Assessing the essentiality of <italic>Leishmania donovani</italic> nitroreductase and its role in nitro drug activation, Antimicrob Agents Chemother, 57, 901, 10.1128/AAC.01788-12
SR Wilkinson, 2008, A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes, Proc Natl Acad Sci USA, 105, 5022, 10.1073/pnas.0711014105
S Patterson, 2016, The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis, eLife, 5, e09744, 10.7554/eLife.09744
S Patterson, 2013, The <italic>R</italic> enantiomer of the anti-tubercular drug PA-824 as a potential oral treatment for visceral leishmaniasis, Antimicrob Agents Chemother, 57, 4699, 10.1128/AAC.00722-13
S Wyllie, 2016, Nitroheterocyclic drug resistance mechanisms in <italic>Trypanosoma brucei</italic>, J Antimicrob Chemother, 71, 625, 10.1093/jac/dkv376
CK Stover, 2000, A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis, Nature, 405, 962, 10.1038/35016103
K Sasahara, 2015, Pharmacokinetics and metabolism of delamanid, a novel anti-tuberculosis drug, in animals and humans: importance of albumin metabolism in vivo, Drug Metab Dispos, 43, 1267, 10.1124/dmd.115.064527
A Aliverti, 1999, Flavoprotein Protocols, 9
E Torreele, 2010, Fexinidazole—a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness, PLoS Negl Trop Dis, 4, e923, 10.1371/journal.pntd.0000923
S Alsford, 2012, High-throughput decoding of antitrypanosomal drug efficacy and resistance, Nature, 482, 232, 10.1038/nature10771
BS Hall, 2012, Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation, Antimicrob Agents Chemother, 56, 115, 10.1128/AAC.05135-11
SE Cellitti, 2012, Structure of Ddn, the deazaflavin-dependent nitroreductase from <italic>Mycobacterium tuberculosis</italic> Involved in bioreductive activation of PA-824, Structure, 20, 101, 10.1016/j.str.2011.11.001
M Gurumurthy, 2012, Substrate specificity of the deazaflavin-dependent nitroreductase from <italic>Mycobacterium tuberculosis</italic> responsible for the bioreductive activation of bicyclic nitroimidazoles, FEBS J, 279, 113, 10.1111/j.1742-4658.2011.08404.x
R Singh, 2008, PA-824 kills nonreplicating <italic>Mycobacterium tuberculosis</italic> by intracellular NO release, Science, 322, 1392, 10.1126/science.1164571
M Dogra, 2011, Comparative bioactivation of the novel anti-tuberculosis agent PA-824 in <italic>Mycobacteria</italic> and a subcellular fraction of human liver, Br J Pharmacol, 162, 226, 10.1111/j.1476-5381.2010.01040.x
U Manjunatha, 2009, The mechanism of action of PA-824: Novel insights from transcriptional profiling, Commun Integr Biol, 2, 215, 10.4161/cib.2.3.7926
HS Toogood, 2014, New developments in 'ene'-reductase catalysed biological hydrogenations, Curr Opin Chem Biol, 19, 107, 10.1016/j.cbpa.2014.01.019
R Stuermer, 2007, Asymmetric bioreduction of activated C = C bonds using enoate reductases from the old yellow enzyme family, Curr Opin Chem Biol, 11, 203, 10.1016/j.cbpa.2007.02.025
RE Williams, 2002, 'New uses for an Old Enzyme'—the Old Yellow Enzyme family of flavoenzymes, Microbiology, 148, 1607, 10.1099/00221287-148-6-1607
BK Kubata, 2002, A key role for old yellow enzyme in the metabolism of drugs by <italic>Trypanosoma cruzi</italic>, J Exp Med, 196, 1241, 10.1084/jem.20020885
S Goyard, 2003, An <italic>in vitro</italic> system for developmental and genetic studies of <italic>Leishmania donovani</italic> phosphoglycans, Mol Biochem Parasitol, 130, 31, 10.1016/S0166-6851(03)00142-7
E Fontana, 2011, Synthesis of <sup>2</sup>H- and <sup>14</sup>C-labeled fexinidazole and its primary metabolites labeled with <sup>2</sup>H, J Label Compd Radiopharm, 54, 714, 10.1002/jlcr.1914
Winkelmann E. and Raether W., inventors; Hoechst Aktiengesellschaft, assignees (16-8-1977) 1-Methyl-2-(phenyl-oxymethyl)-5-nitro-imidazoles and process for their manufacture. United States patent application 4,042,705.
H Sasaki, 2006, Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-<italic>b</italic>]oxazoles, J Med Chem, 49, 7854, 10.1021/jm060957y
K Nagarajan, 1989, Nitroimidazoles XXI. 2,3-Dihydro-6-nitroimidazo[2,1-B]oxazoles with antitubercular Activity, Eur J Med Chem, 24, 631, 10.1016/0223-5234(89)90034-2
MD Urbaniak, 2012, Comparative SILAC proteomic analysis of <italic>Trypanosoma brucei</italic> bloodstream and procyclic lifecycle stages, J Parasitol Res, 7, e36619
R Brun, 1979, Cultivation and in vitro cloning of procyclic culture forms of <italic>Trypanosoma brucei</italic> in a semi-defined medium, Acta Trop, 36, 289
J Cox, 2011, Andromeda: a peptide search engine integrated into the MaxQuant environment, J Proteome Res, 10, 1794, 10.1021/pr101065j
J Cox, 2008, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol, 26, 1367, 10.1038/nbt.1511
ML Guther, 2014, High-confidence glycosome proteome for procyclic form <italic>Trypanosoma brucei</italic> by epitope-tag organelle enrichment and SILAC proteomics, J Proteome Res, 13, 2796, 10.1021/pr401209w
K Martin, 2005, The myo-inositol-1-phosphate synthase gene is essential in <italic>Trypanosoma brucei</italic>, Biochem Soc Trans, 33, 983, 10.1042/BST0330983
I Kozarewa, 2009, Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes, Nat Methods, 6, 291, 10.1038/nmeth.1311
T Downing, 2011, Whole genome sequencing of multiple <italic>Leishmania donovani</italic> clinical isolates provides insights into population structure and mechanisms of drug resistance, Genome Res, 21, 2143, 10.1101/gr.123430.111