Activating palladium nanoparticles via a Mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction
Tài liệu tham khảo
Chen, 2019, Recent advances in electrocatalysts for halogenated organic pollutant degradation, Environ. Sci. Nano, 6, 2332, 10.1039/C9EN00411D
He, 2018, Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron, Environ. Sci. Technol., 52, 8627, 10.1021/acs.est.8b01735
Nunez Garcia, 2016, Enhanced dechlorination of 1,2-dichloroethane by coupled nano iron-dithionite treatment, Environ. Sci. Technol., 50, 5243, 10.1021/acs.est.6b00734
He, 2013, Effect of silver or copper middle layer on the performance of palladium modified nickel foam electrodes in the 2-chlorobiphenyl dechlorination, J. Hazard. Mater., 250-251, 181, 10.1016/j.jhazmat.2013.02.001
Heck, 2019, Catalytic converters for water treatment, Acc. Chem. Res., 52, 906, 10.1021/acs.accounts.8b00642
Liu, 2019, 2,4-Dichlorophenol removal from water using an electrochemical method improved by a composite molecularly imprinted membrane/bipolar membrane, J. Hazard. Mater., 377, 259, 10.1016/j.jhazmat.2019.05.064
Mao, 2016, Dechlorination of trichloroacetic acid using a noble metal-free graphene-Cu foam electrode via direct cathodic reduction and atomic H, Environ. Sci. Technol., 50, 3829, 10.1021/acs.est.5b05006
Xiong, 2018, Rapid, highly efficient and stable catalytic hydrodechlorination of chlorophenols over novel Pd/CNTs-Ni foam composite catalyst in continuous-flow, J. Hazard. Mater., 355, 89, 10.1016/j.jhazmat.2018.05.018
Liu, 2015, Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol, J. Hazard. Mater., 290, 1, 10.1016/j.jhazmat.2015.02.016
Sun, 2015, Influence of environmental factors on the electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid on nTiN doped Pd/Ni foam electrode, Chem. Eng. J., 281, 183, 10.1016/j.cej.2015.06.113
Xie, 2013, Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater, Water Res., 47, 3573, 10.1016/j.watres.2013.04.004
Peng, 2019, Bimetallic composition-promoted electrocatalytic hydrodechlorination reaction on silver-palladium alloy nanoparticles, ACS Catal., 9, 10803, 10.1021/acscatal.9b02282
Lou, 2019, Insight into atomic H* generation, H2 evolution, and cathode potential of MnO2 induced Pd/Ni foam cathode for electrocatalytic hydrodechlorination, Chem. Eng. J., 374, 211, 10.1016/j.cej.2019.05.171
Zhao, 2013, Degrading perchloroethene at ambient conditions using Pd and Pd-on-Au reduction catalysts, Appl. Catal. B: Environ., 140-141, 468, 10.1016/j.apcatb.2013.04.032
Cárdenas-Lizana, 2013, Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: role of the support, ACS Catal., 3, 1386, 10.1021/cs4001943
Lou, 2019, TiC doped palladium/nickel foam cathode for electrocatalytic hydrodechlorination of 2,4-DCBA: enhanced electrical conductivity and reactive activity, J. Hazard. Mater., 362, 148, 10.1016/j.jhazmat.2018.08.066
Su, 2016, Activating cobalt nanoparticles via the Mott-Schottky effect in nitrogenrich carbon shells for base-free aerobic oxidation of alcohols to esters, J. Am. Chem. Soc., 139, 811, 10.1021/jacs.6b10710
Cai, 2013, Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst, Angew. Chem. Int. Ed. Engl., 52, 11822, 10.1002/anie.201304652
Li, 2018, Local charge distribution engineered by Schottky Heterojunctions toward urea electrolysis, Adv. Energ. Mater., 8, 10.1002/aenm.201801775
Zhuang, 2018, MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution, Angew. Chem. Int. Ed. Engl., 57, 496, 10.1002/anie.201708748
Liu, 2018, Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions, Nature, 557, 696, 10.1038/s41586-018-0129-8
Li, 2019, Mott-Schottky effect leads to alkynes semiHydrogenation over Pd-nanocubes@N-doped carbon, ACS Catal., 9, 4632, 10.1021/acscatal.9b01001
Jiang, 2017, Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: enhanced visible-light-response photocatalytic NO removal and reaction pathway, Appl. Catal. B: Environ., 205, 532, 10.1016/j.apcatb.2017.01.009
Xu, 2018, Unprecedented catalytic performance in amine syntheses via Pd/g-C3N4 catalyst-assisted transfer hydrogenation, Green Chem., 20, 2038, 10.1039/C8GC00144H
Nutt, 2005, Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination, Environ. Sci. Technol., 39, 1346, 10.1021/es048560b
Kresse, 1994, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev., B Condens. Matter, 49, 14251, 10.1103/PhysRevB.49.14251
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Mathew, 2014, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways, J. Chem. Phys., 140, 10.1063/1.4865107
Fishman, 2013, Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper, Phys. Rev. B, 87, 10.1103/PhysRevB.87.245402
Bhowmik, 2016, Palladium nanoparticle–graphitic carbon nitride porous synergistic catalyst for hydrogen evolution/oxidation reactions over a broad range of pH and correlation of its catalytic activity with measured hydrogen binding energy, ACS Catal., 6, 1929, 10.1021/acscatal.5b02485
Sun, 2013, Complete dechlorination of 2,4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode, J. Hazard. Mater., 244-245, 287, 10.1016/j.jhazmat.2012.11.017
Sun, 2019, Formation of novel disinfection by-products chlorinated benzoquinone, phenyl benzoquinones and polycyclic aromatic hydrocarbons during chlorination treatment on UV filter 2,4-dihydroxybenzophenone in swimming pool water, J. Hazard. Mater., 367, 725, 10.1016/j.jhazmat.2019.01.008
Jiang, 2017, Identification of active hydrogen species on palladium nanoparticles for an enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenol in water, Environ. Sci. Technol., 51, 7599, 10.1021/acs.est.7b01128
Mao, 2019, Dechlorination of triclosan by enhanced atomic hydrogen-mediated electrochemical reduction: kinetics, mechanism, and toxicity assessment, Appl. Catal. B: Environ., 241, 120, 10.1016/j.apcatb.2018.09.013
Liu, 2018, Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine-cobalt bond and atomic H, J. Hazard. Mater., 358, 294, 10.1016/j.jhazmat.2018.06.064
Omar, 2011, Density functional theory analysis of dichloromethane and hydrogen interaction with Pd clusters: first step to simulate catalytic hydrodechlorination, J. Phys. Chem. C, 115, 14180, 10.1021/jp200329j
Álvarez-Montero, 2015, Kinetic study of the hydrodechlorination of chloromethanes with activated-carbon-supported metallic catalysts, Ind. Eng. Chem. Res., 54, 2023, 10.1021/ie5042484
Jadbabaei, 2017, Development of palladium-resin composites for catalytic hydrodechlorination of 4-chlorophenol, Appl. Catal. B: Environ., 205, 576, 10.1016/j.apcatb.2016.12.068
Yuan, 2007, Aqueous-phase hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3: reaction under controlled pH, Ind. Eng. Chem. Res., 46, 705, 10.1021/ie060802o
Jiang, 2018, Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution, Chem. Eng. J., 348, 26, 10.1016/j.cej.2018.04.173
Shu, 2019, Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles: the critical role of hydroxyl group deprotonation, Appl. Catal. A Gen., 583, 10.1016/j.apcata.2019.117146
Wu, 2018, Carbon-nanotube-doped Pd-Ni bimetallic three-dimensional electrode for electrocatalytic hydrodechlorination of 4-chlorophenol: enhanced activity and stability, J. Hazard. Mater., 356, 17, 10.1016/j.jhazmat.2018.05.034
Yuan, 2012, Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions, Environ. Sci. Technol., 46, 3398, 10.1021/es204546u
Celik, 2019, Aqueous-phase hydrodechlorination of trichloroethylene over Pd-based swellable organically modified silica: catalyst deactivation due to sulfur species, Ind. Eng. Chem. Res., 58, 4054, 10.1021/acs.iecr.8b05979
Angeles-Wedler, 2008, Permanganate oxidation of sulfur compounds to prevent poisoning of Pd catalysts in water treatment processes, Environ. Sci. Technol., 42, 5734, 10.1021/es800330s
Wu, 2018, Synthesis of palladium phosphides for aqueous phase hydrodechlorination: kinetic study and deactivation resistance, J. Catal., 366, 80, 10.1016/j.jcat.2018.07.040
Celik, 2018, Swellable Organically Modified Silica (SOMS) as a catalyst scaffold for catalytic treatment of water contaminated with trichloroethylene, ACS Catal., 8, 6796, 10.1021/acscatal.8b01700
